1. Polynomial invariants and moduli of generic two-dimensional commutative algebras
- Author
-
M. Rausch de Traubenberg, M. J. Slupinski, Institut de Recherche Mathématique Avancée (IRMA), and Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Discrete mathematics ,Pure mathematics ,Polynomial ,Algebra and Number Theory ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Modulo ,010102 general mathematics ,Field (mathematics) ,01 natural sciences ,Moduli space ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,Surjective function ,0103 physical sciences ,010307 mathematical physics ,0101 mathematics ,Commutative algebra ,Commutative property ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Vector space - Abstract
Let V be a two-dimensional vector space over a field F of characteristic not 2 or 3. We show there is a surjection ν from the set of ‘generic’ commutative algebra structures on V modulo the action ...
- Published
- 2020
- Full Text
- View/download PDF