Back to Search
Start Over
Hopf algebras for ternary algebras
- Source :
- Journal of Mathematical Physics, Journal of Mathematical Physics, American Institute of Physics (AIP), 2009, 50, pp.063508. ⟨10.1063/1.3152631⟩
- Publication Year :
- 2009
- Publisher :
- HAL CCSD, 2009.
-
Abstract
- We construct an universal enveloping algebra associated to the ternary extension of Lie (super)algebras called Lie algebra of order three. A Poincar\'e-Birkhoff-Witt theorem is proven is this context. It this then shown that this universal enveloping algebra can be endowed with a structure of Hopf algebra. The study of the dual of the universal enveloping algebra enables to define the parameters of the transformation of a Lie algebra of order three. It turns out that these variables are the variables which generate the three-exterior algebra.<br />Comment: 21 pages
- Subjects :
- High Energy Physics - Theory
Pure mathematics
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Structure (category theory)
FOS: Physical sciences
Context (language use)
Universal enveloping algebra
01 natural sciences
02.10.Ud
Lie algebras
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
0103 physical sciences
Lie algebra
Mathematics - Quantum Algebra
FOS: Mathematics
Quantum Algebra (math.QA)
010306 general physics
Mathematical Physics
Mathematics
010308 nuclear & particles physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
Order (ring theory)
Statistical and Nonlinear Physics
Extension (predicate logic)
Mathematical Physics (math-ph)
Hopf algebra
High Energy Physics - Theory (hep-th)
Linear algebra
[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
Subjects
Details
- Language :
- English
- ISSN :
- 00222488
- Database :
- OpenAIRE
- Journal :
- Journal of Mathematical Physics, Journal of Mathematical Physics, American Institute of Physics (AIP), 2009, 50, pp.063508. ⟨10.1063/1.3152631⟩
- Accession number :
- edsair.doi.dedup.....114cd0d7be54899701fb7109a1de99b2
- Full Text :
- https://doi.org/10.1063/1.3152631⟩