Back to Search Start Over

Kac-Moody algebras and Lie algebras of regular vector fields on tori

Authors :
M. Rausch de Traubenberg
M. J. Slupinski
Laboratoire de Physique Mathématique et Théorique (PMT)
Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)
Laboratoire de Physique Théorique (LPTH)
Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche Mathématique Avancée (IRMA)
Centre National de la Recherche Scientifique (CNRS)-Université Louis Pasteur - Strasbourg I
Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Algebra, Journal of Algebra, Elsevier, 2002, 253, pp.189-208. ⟨10.1016/S0021-8693(02)00054-6⟩
Publication Year :
2002
Publisher :
HAL CCSD, 2002.

Abstract

We consider the problem of representing the Kac-Moody algebra $\mathfrak{g}(N)$ specified by an $r\times r$ indecomposable generalised Cartan matrix $N$ as vector fields on the torus ${{\bb C}^*}^r$. It is shown that, if the representations are of a certain form, this is possible if and only if $\mathfrak{g}(N)\cong sl(r+1,{\bb C})$ or $\tilde{sl}(r,{\bb C})$. For $sl(r+1,{\bb C})$ and $\tilde{sl}(r,{\bb C})$, discrete families of representations are constructed. These generalise the well-known discrete families of representations of $sl(2,{\bb C})$ as regular vector fields on ${\bb C}^*$<br />Comment: 20 pages, typo corrected in the title

Details

Language :
English
ISSN :
00218693 and 1090266X
Database :
OpenAIRE
Journal :
Journal of Algebra, Journal of Algebra, Elsevier, 2002, 253, pp.189-208. ⟨10.1016/S0021-8693(02)00054-6⟩
Accession number :
edsair.doi.dedup.....7cf9ac7d6f4488ea46306541012945f8
Full Text :
https://doi.org/10.1016/S0021-8693(02)00054-6⟩