57 results on '"Julien E, Rault"'
Search Results
2. Spin–Charge Interconversion in KTaO 3 2D Electron Gases
- Author
-
Suvam Bhattacharya, Raphaël Salazar, Julien E. Rault, Jean-Philippe Attané, Guilhem Saiz, Manuel Bibes, Dmitri E. Nikonov, Ian A. Young, Patrick Le Fèvre, Anke Sander, Sara Varotto, François Bertran, Lin Chia-Ching, Paul Noël, Diogo C. Vaz, Felix Trier, Maxen Cosset-Cheneau, Luis M. Vicente-Arche, Nicolas Bergeal, Srijani Mallik, Laurent Vila, Julien Bréhin, Agnès Barthélémy, Hai Li, Gerbold Menard, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), ANR-16-CE24-0017,TOP-RISE,Isolant topologique et etats d'interfaces Rashba pour l'électronique de spin(2016), ANR-19-CE47-0006,QUANTOP,Structures quantiques d'oxydes pour les dispositifs topologiques(2019), and ANR-18-CE24-0015,CORNFLAKE,Contrôle ferroélectrique du couplage spin-orbite dans les dichalcogenides de métaux de transition(2018)
- Subjects
Materials science ,Magnetoresistance ,Condensed matter physics ,Photoemission spectroscopy ,Mechanical Engineering ,02 engineering and technology ,Electron ,Electronic structure ,Spin–orbit interaction ,021001 nanoscience & nanotechnology ,01 natural sciences ,Magnetic field ,T-symmetry ,Mechanics of Materials ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology ,Perovskite (structure) - Abstract
International audience; Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g., by the application of a magnetic field. Examples include the direct and inverse Edelstein effects (DEE, IEE) that allow the interconversion between spin currents and charge currents. The DEE and IEE have been investigated in interfaces based on the perovskite SrTiO$_3$ (STO), albeit in separate studies focusing on one or the other. The demonstration of these effects remains mostly elusive in other oxide interface systems despite their blossoming in the last decade. Here, we report the observation of both the DEE and IEE in a new interfacial two-dimensional electron gas (2DEG) based on the perovskite oxide KTaO$_3$. We generate 2DEGs by the simple deposition of Al metal onto KTaO$_3$ single crystals, characterize them by angle-resolved photoemission spectroscopy and magnetotransport, and demonstrate the DEE through unidirectional magnetoresistance and the IEE by spin-pumping experiments. We compare the spin-charge interconversion efficiency with that of STO-based interfaces, relate it to the 2DEG electronic structure, and give perspectives for the implementation of KTaO$_3$ 2DEGs into spin-orbitronic devices.
- Published
- 2021
- Full Text
- View/download PDF
3. Origin of the different electronic structure of Rh- and Ru-doped Sr2IrO4
- Author
-
Dorothée Colson, Julien E. Rault, A. Louat, Patrick Le Fèvre, François Bertran, Paul Foulquier, and V. Brouet
- Subjects
Materials science ,Mott insulator ,Doping ,chemistry.chemical_element ,Charge (physics) ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,Coupling (probability) ,01 natural sciences ,Metal ,Crystallography ,Transition metal ,chemistry ,visual_art ,0103 physical sciences ,visual_art.visual_art_medium ,Condensed Matter::Strongly Correlated Electrons ,Iridium ,010306 general physics ,0210 nano-technology - Abstract
One way to induce insulator-to-metal transitions in the spin-orbit Mott insulator ${\mathrm{Sr}}_{2}\mathrm{Ir}{\mathrm{O}}_{4}$ is to substitute iridium with transition metals (Ru, Rh). However, this creates intriguing inhomogeneous metallic states, which cannot be described by a simple doping effect. We detail the electronic structure of the Ru-doped case with angle-resolved photoemission and show that, in contrast to Rh, it cannot be connected to the undoped case by a rigid shift. We further identify bands below ${E}_{F}$ coexisting with the metallic ones that we assign to nonbonding Ir sites. We rationalize the differences between Rh and Ru by a different hybridization with oxygen, which mediates the coupling to Ir and sensitively affects the effective doping. We argue that the spin-orbit coupling does not control either the charge transfer or the transition threshold.
- Published
- 2021
- Full Text
- View/download PDF
4. Photoemission signature of momentum-dependent hybridization in CeCoIn5
- Author
-
Antonio Tejeda, Dariusz Kaczorowski, Jozef Spałek, K. Kissner, François Bertran, Julien E. Rault, Jan Minár, Friedrich Reinert, Laurent Nicolaï, Ł. Walczak, Maciej Fidrysiak, Dominik Legut, Marcin Rosmus, P. Starowicz, R. Kurleto, Daniel Gnida, and Andrzej P. Kądzielawa
- Subjects
Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed matter physics ,Photoemission spectroscopy ,f electrons, photoemission, resonant ARPES ,FOS: Physical sciences ,Fermi surface ,Fermi energy ,Angle-resolved photoemission spectroscopy ,Photon energy ,Heavy fermion superconductor ,Brillouin zone ,Condensed Matter - Strongly Correlated Electrons ,Tight Binding model ,Wave vector ,hybridization ,multiple scattering KKR - Abstract
Hybridization between $f$ electrons and conduction bands ($c$-$f$ hybridization) is a driving force for many unusual phenomena. To provide insight into it, systematic studies of CeCoIn$_5$ heavy fermion superconductor have been performed by angle-resolved photoemission spectroscopy (ARPES) in a large angular range at temperature of $T=6$ K. The used photon energy of 122 eV corresponds to Ce $4d$-$4f$ resonance. Calculations carried out with relativistic multiple scattering Korringa-Kohn-Rostoker method and one-step model of photoemission yielded realistic simulation of the ARPES spectra indicating that Ce-In surface termination prevails. Surface states, which have been identified in the calculations, contribute significantly to the spectra. Effects of the hybridization strongly depend on wave vector. They include a dispersion of heavy electrons and bands gaining $f$-electron character when approaching Fermi energy. We have also observed a considerable variation of $f$-electron spectral weight at $E_F$, which is normally determined by both matrix element effects and wave vector dependent $c$-$f$ hybridization. Fermi surface scans covering a few Brillouin zones revealed large matrix element effects. A symmetrization of experimental Fermi surface, which reduces matrix element contribution, yielded a specific variation of $4f$-electron enhanced spectral intensity at $E_F$ around $\bar{\Gamma}$ and $\bar{M}$ points. Tight-binding approximation calculations for Ce-In plane provided the same universal distribution of $4f$-electron density for a range of values of the parameters used in the model., Comment: 15 pages, 9 figures
- Published
- 2021
- Full Text
- View/download PDF
5. Structure and electronic states of vicinal Ag(111) surfaces with densely kinked steps
- Author
-
J Enrique Ortega, Guillaume Vasseur, Ignacio Piquero-Zulaica, Sonia Matencio, Miguel Angel Valbuena, Julien E Rault, Frederik Schiller, Martina Corso, Aitor Mugarza, and Jorge Lobo-Checa
- Subjects
vicinal surface ,curved surface ,kinked step ,STM ,photoemission ,surface states ,Science ,Physics ,QC1-999 - Abstract
Vicinal surfaces exhibiting arrays of atomic steps are frequently investigated due to their diverse physical-chemical properties and their use as growth templates. However, surfaces featuring steps with a large number of low-coordinated kink-atoms have been widely ignored, despite their higher potential for chemistry and catalysis. Here, the equilibrium structure and the electronic states of vicinal Ag(111) surfaces with densely kinked steps are investigated in a systematic way using a curved crystal. With scanning tunneling microscopy we observe an exceptional structural homogeneity of this class of vicinals, reflected in the smooth probability distribution of terrace sizes at all vicinal angles. This allows us to observe, first, a subtle evolution of the terrace-size distribution as a function of the terrace-width that challenges statistical models of step lattices, and second, lattice fluctuations around resonant modes of surface states. As shown in angle resolved photoemission experiments, surface states undergo stronger scattering by fully-kinked step-edges, which triggers the full depletion of the two-dimensional band at surfaces with relatively small vicinal angles.
- Published
- 2018
- Full Text
- View/download PDF
6. Spin-Charge Interconversion in KTaO
- Author
-
Luis M, Vicente-Arche, Julien, Bréhin, Sara, Varotto, Maxen, Cosset-Cheneau, Srijani, Mallik, Raphaël, Salazar, Paul, Noël, Diogo C, Vaz, Felix, Trier, Suvam, Bhattacharya, Anke, Sander, Patrick, Le Fèvre, François, Bertran, Guilhem, Saiz, Gerbold, Ménard, Nicolas, Bergeal, Agnès, Barthélémy, Hai, Li, Chia-Ching, Lin, Dmitri E, Nikonov, Ian A, Young, Julien E, Rault, Laurent, Vila, Jean-Philippe, Attané, and Manuel, Bibes
- Abstract
Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g., by the application of a magnetic field. Examples include the direct and inverse Edelstein effects (DEE, IEE) that allow the interconversion between spin currents and charge currents. The DEE and IEE have been investigated in interfaces based on the perovskite SrTiO
- Published
- 2021
7. Experimental Observation and Spin Texture of Dirac Node Arcs in Tetradymite Topological Metals
- Author
-
Luis Balicas, Andrés F. Santander-Syro, Kuan-Wen Chen, K. Miyamoto, Julien E. Rault, E. Frantzeskakis, Ryan Baumbach, J. Dai, Taichi Okuda, F. Fortuna, Efstratios Manousakis, Niraj Aryal, P. Le Fèvre, Institut des Sciences Moléculaires d'Orsay (ISMO), and Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Surface (mathematics) ,Dirac (software) ,FOS: Physical sciences ,General Physics and Astronomy ,Tetradymite ,Position and momentum space ,insulator ,engineering.material ,Topology ,01 natural sciences ,Condensed Matter - Strongly Correlated Electrons ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,surface ,semimetal ,Invariant (mathematics) ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Spin-½ ,[PHYS]Physics [physics] ,Physics ,Condensed Matter - Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed Matter - Mesoscale and Nanoscale Physics ,Texture (cosmology) ,Materials Science (cond-mat.mtrl-sci) ,cone ,states ,3. Good health ,Cone (topology) ,engineering ,discovery - Abstract
We report the observation of a non-trivial spin texture in Dirac node arcs, novel topological objects formed when Dirac cones of massless particles extend along an open one-dimensional line in momentum space. We find that such states are present in all the compounds of the tetradymite M$_2$Te$_2$X family (M$=$Ti, Zr or Hf and X$=$P or As), regardless of the weak or strong character of the topological invariant. The Dirac node arcs in tetradymites are thus the simplest possible, textbook example, of a type-I Dirac system with a single spin-polarized node arc., Main Text + Supplementary Information, 12 pages, 11 figures
- Published
- 2021
- Full Text
- View/download PDF
8. Electronic band gap of van der Waals α-As2Te3 crystals
- Author
-
Julien Chaste, Jean-Christophe Girard, Julien E. Rault, Jean-Francois Dayen, Gilles Patriarche, Fabrice Oehler, Demetrio Logoteta, Federico Bisti, Marco G. Pala, Charlie Gréboval, Abdelkarim Ouerghi, Debora Pierucci, Ulrich Nguétchuissi Noumbé, Emmanuel Lhuillier, Lama Khalil, Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ALBA Synchrotron light source [Barcelone], Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-19-CE09-0026,GRaSkop,Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides(2019), ANR-18-CE24-0007,MAGICVALLEY,Polarisation de vallée induite par couplage d'échange magnétique dans les matériaux 2D à grande échelle(2018), ANR-17-CE24-0030,RhomboG,Propriétés electroniques de couches minces de graphite rhombohedrique(2017), European Project: 756225,blackQD, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, lhuillier, emmanuel, Tuning Giant Rashba Spin-Orbit Coupling in Polar Single Layer Transition Metal Dichalcogenides - - GRaSkop2019 - ANR-19-CE09-0026 - AAPG2019 - VALID, APPEL À PROJETS GÉNÉRIQUE 2018 - Polarisation de vallée induite par couplage d'échange magnétique dans les matériaux 2D à grande échelle - - MAGICVALLEY2018 - ANR-18-CE24-0007 - AAPG2018 - VALID, Propriétés electroniques de couches minces de graphite rhombohedrique - - RhomboG2017 - ANR-17-CE24-0030 - AAPG2017 - VALID, and ERC blackQD - blackQD - 756225 - INCOMING
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,As2Te3 ,Scanning tunneling spectroscopy ,Stacking ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,symbols.namesake ,Scanning transmission electron microscopy ,Anisotropy ,Spectroscopy ,Field Effect Transistor ,Electronic Transport ,business.industry ,021001 nanoscience & nanotechnology ,Electronic Band Gap ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0104 chemical sciences ,Semiconductor ,Chemical physics ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,van der Waals force ,Photonics ,0210 nano-technology ,business - Abstract
International audience; van der Waals materials offer a large variety of electronic properties depending on chemical composition, number of layers, and stacking order. Among them, As2Te3 has attracted attention due to the promise of outstanding electronic properties, and high photo-response. Precise experimental determinations of the electronic properties of As2Te3 are yet sorely needed for better understanding of potential properties and device applications. Here, we study the structural and electronic properties of α-As2Te3. Scanning transmission electron microscopy coupled to energy X-ray dispersion (STEM-EDX), and micro-Raman spectroscopy all confirm that our specimens correspond to α-As2Te3. Scanning tunneling spectroscopy (STS) at 4.2K demonstrates that α-As2Te3 exhibits an electronic band gap of about 0.4 eV. The material can be exfoliated, revealing the (100) anisotropic surface. Transport measurements on a thick exfoliated sample (bulk-like) confirm the STS results. These findings allows for a deeper understanding of the As2Te3 electronic properties, underlying the potential of V-VI semiconductors for electronic and photonic technologies.
- Published
- 2021
- Full Text
- View/download PDF
9. High resolution depth profiling using near-total-reflection hard X-ray photoelectron spectroscopy
- Author
-
Cheng-Tai Kuo, Julien E. Rault, Henrique P. Martins, Slavomír Nemšák, and G. Conti
- Subjects
Total internal reflection ,Range (particle radiation) ,Condensed Matter - Materials Science ,Materials science ,business.industry ,Oxide ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Heterojunction ,Surfaces and Interfaces ,Condensed Matter Physics ,Surfaces, Coatings and Films ,chemistry.chemical_compound ,Optics ,X-ray photoelectron spectroscopy ,chemistry ,Reflection (physics) ,Penetration depth ,business ,Intensity (heat transfer) - Abstract
By adjusting the incidence angle of incoming X-ray near the critical angle of X-ray total reflection, the photoelectron intensity is strongly modulated due to the variation of X-ray penetration depth. Photoelectron spectroscopy (PES) combining with near total reflection (NTR) exhibit tunable surface sensitivity, providing depth-resolved information. In this review article, we first describe the experimental setup and specific data analysis process. We then review three different examples which show the broad application of this method. The emphasis is on its applications to correlated oxide heterostructures, especially quantitative depth analyses of compositions and electronic states. In a last part, we discussed the limitations of this technique, mostly in terms of range of samples which can be studied., Comment: 28 pages, 5 figures, review paper on NTR HAXPES
- Published
- 2021
- Full Text
- View/download PDF
10. Structure and electronic states of vicinal Ag(111) surfaces with densely kinked steps
- Author
-
Sonia Matencio, Martina Corso, J. Enrique Ortega, Jorge Lobo-Checa, Frederik Schiller, M.A. Valbuena, Guillaume Vasseur, Ignacio Piquero-Zulaica, Aitor Mugarza, Julien E Rault, Ministerio de Economía, Industria y Competitividad (España), Eusko Jaurlaritza, Gobierno de Aragón, Generalitat de Catalunya, and European Commission
- Subjects
STM ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Molecular physics ,law.invention ,Electronic states ,Photoemission ,law ,Lattice (order) ,Homogeneity (physics) ,Surface states ,Physics ,Curved surface ,Scattering ,Ag(111) ,Kinked step ,Vicinal surface ,Curved surfaces ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Template ,Scanning tunneling microscope ,0210 nano-technology ,Vicinal - Abstract
Vicinal surfaces exhibiting arrays of atomic steps are frequently investigated due to their diverse physical-chemical properties and their use as growth templates. However, surfaces featuring steps with a large number of low-coordinated kink-atoms have been widely ignored, despite their higher potential for chemistry and catalysis. Here, the equilibrium structure and the electronic states of vicinal Ag(111) surfaces with densely kinked steps are investigated in a systematic way using a curved crystal. With scanning tunneling microscopy we observe an exceptional structural homogeneity of this class of vicinals, reflected in the smooth probability distribution of terrace sizes at all vicinal angles. This allows us to observe, first, a subtle evolution of the terrace-size distribution as a function of the terrace-width that challenges statistical models of step lattices, and second, lattice fluctuations around resonant modes of surface states. As shown in angle resolved photoemission experiments, surface states undergo stronger scattering by fully-kinked step-edges, which triggers the full depletion of the two-dimensional band at surfaces with relatively small vicinal angles., We acknowledge the financial support from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO, Grant No. MAT2016-78293-C6 and Severo Ochoa No. SEV-2013-0295), the Basque Government (Grant No. IT-621-13), the regional Government of Aragon (RASMIA project), the CERCA Programme/Generalitat de Catalunya, and the European Regional Development Fund (ERDF) under the program Interreg V-A España-Francia-Andorra (Contract No. EFA194/16 TNSI).
- Published
- 2021
11. Lifetime Stability and Microstructure Properties of Cr/B4C X-ray Reflective Multilayer Coatings
- Author
-
Julien E. Rault, Evgueni Meltchakov, Franck Delmotte, Regina Soufli, Christopher C. Walton, Catherine Burcklen, Eric M. Gullikson, Jennifer Rebellato, Laboratoire Charles Fabry / Optique XUV, Laboratoire Charles Fabry (LCF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS), Lawrence Livermore National Laboratory (LLNL), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), and Lawrence Berkeley National Laboratory [Berkeley] (LBNL)
- Subjects
Diffraction ,Materials science ,010308 nuclear & particles physics ,Chrominum ,Biomedical Engineering ,Analytical chemistry ,Soft X-rays ,Bioengineering ,General Chemistry ,Photon energy ,Condensed Matter Physics ,Microstructure ,01 natural sciences ,010309 optics ,Diffusion layer ,Boron Carbide ,Multilayers ,Electron diffraction ,Transmission electron microscopy ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Spectroscopy ,Layer (electronics) - Abstract
International audience; This paper demonstrates that highly reflective Cr/B 4 C multilayer interference coatings with nano-metric layer thicknesses, designed to operate in the soft X-ray photon energy range, have stable reflective performance for a period of 3 years after deposition. The microstructure and chemical composition of layers and interfaces within Cr/B 4 C multilayers is also examined, with emphasis on the B 4 Con -Cr interface where a significant diffusion layer is formed and on the oxide in the top B 4 C layer. Multiple characterization techniques (X-ray reflectivity at different photon energies, X-ray pho-toelectron spectroscopy, transmission electron microscopy, electron diffraction and X-ray diffraction) are employed and the results reveal a consistent picture of the Cr/B 4 C layer structure.
- Published
- 2019
- Full Text
- View/download PDF
12. HAXPES for Materials Science at the GALAXIES Beamline
- Author
-
Julien E. Rault, Denis Céolin, Jean-Pascal Rueff, Y. Utsumi, and James M. Ablett
- Subjects
Nuclear and High Energy Physics ,Beamline ,0103 physical sciences ,New materials ,02 engineering and technology ,021001 nanoscience & nanotechnology ,010306 general physics ,0210 nano-technology ,01 natural sciences ,Engineering physics ,Atomic and Molecular Physics, and Optics ,Galaxy - Abstract
The need for new materials is constantly growing as their use becomes more and more critical for technological advances. Materials come in a wide variety of structures, dimensionalities, and phases...
- Published
- 2018
- Full Text
- View/download PDF
13. Modified Oxygen Defect Chemistry at Transition Metal Oxide Heterostructures Probed by Hard X-ray Photoelectron Spectroscopy and X-ray Diffraction
- Author
-
Nikolai Tsvetkov, Jean-Pascal Rueff, Bilge Yildiz, Dillon D. Fong, F. William Herbert, Julien E. Rault, and Yan Chen
- Subjects
Magnetism ,General Chemical Engineering ,Oxide ,chemistry.chemical_element ,Heterojunction ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Crystallographic defect ,Oxygen ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Transition metal ,X-ray photoelectron spectroscopy ,Chemical physics ,X-ray crystallography ,Materials Chemistry ,0210 nano-technology - Abstract
Transition metal oxide heterostructures are interesting due to the distinctly different properties that can arise from their interfaces, such as superconductivity, high catalytic activity, and magnetism. Oxygen point defects can play an important role at these interfaces in inducing potentially novel properties. The design of oxide heterostructures in which the oxygen defects are manipulated to attain specific functionalities requires the ability to resolve the state and concentration of local oxygen defects across buried interfaces. In this work, we utilized a novel combination of hard X-ray photoelectron spectroscopy (HAXPES) and high resolution X-ray diffraction (HRXRD) to probe the local oxygen defect distribution across the buried interfaces of oxide heterolayers. This approach provides a nondestructive way to qualitatively probe locally the oxygen defects in transition metal oxide heterostructures. We studied two trilayer structures as model systems: the La0.8Sr0.2CoO3−δ/(La0.5Sr0.5)2CoO4−δ/La0.8Sr0...
- Published
- 2018
- Full Text
- View/download PDF
14. Tunable Doping in Hydrogenated Single Layered Molybdenum Disulfide
- Author
-
Carl H. Naylor, Mathieu G. Silly, Abdelkarim Ouerghi, Zeineb Ben Aziza, Yannick J. Dappe, Julien E. Rault, Adrian Balan, Hugo Henck, Debora Pierucci, Patrick Le Fèvre, François Bertran, A. T. Charlie Johnson, Fausto Sirotti, Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Philadelphia], University of Pennsylvania, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Groupe Modélisation et Théorie (GMT), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, University of Pennsylvania [Philadelphia], Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Service de physique de l'état condensé (SPEC - UMR3680), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
spectroscopy ,Materials science ,Hydrogen ,Photoemission spectroscopy ,Analytical chemistry ,FOS: Physical sciences ,General Physics and Astronomy ,chemistry.chemical_element ,Angle-resolved photoemission spectroscopy ,doping ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Condensed Matter - Strongly Correlated Electrons ,n and p doped MoS 2 ,chemistry.chemical_compound ,Monolayer ,General Materials Science ,Spectroscopy ,Molybdenum disulfide ,defects ,atomic hydrogenation ,[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,Doping ,General Engineering ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,3. Good health ,0104 chemical sciences ,chemistry ,Chemical physics ,electronic properties ,Density functional theory ,0210 nano-technology - Abstract
Structural defects in the molybdenum disulfide (MoS2) monolayer are widely known for strongly altering its properties. Therefore, a deep understanding of these structural defects and how they affect MoS2 electronic properties is of fundamental importance. Here, we report on the incorporation of atomic hydrogen in mono-layered MoS2 to tune its structural defects. We demonstrate that the electronic properties of single layer MoS2 can be tuned from the intrinsic electron (n) to hole (p) doping via controlled exposure to atomic hydrogen at room temperature. Moreover, this hydrogenation process represents a viable technique to completely saturate the sulfur vacancies present in the MoS2 flakes. The successful incorporation of hydrogen in MoS2 leads to the modification of the electronic properties as evidenced by high resolution X-ray photoemission spectroscopy and density functional theory calculations. Micro-Raman spectroscopy and angle resolved photoemission spectroscopy measurements show the high quality of the hydrogenated MoS2 confirming the efficiency of our hydrogenation process. These results demonstrate that the MoS2 hydrogenation could be a significant and efficient way to achieve tunable doping of transition metal dichalcogenides (TMD) materials with non-TMD elements., 15 pages, 6 figures + SI 3 pages 3 figures. Pre-print published with the authorization of ACS Publications
- Published
- 2017
- Full Text
- View/download PDF
15. Dispersing and semi-flat bands in the wide band gap two-dimensional semiconductor bilayer silicon oxide
- Author
-
Pascal Pochet, Yannick J. Dappe, Johann Coraux, Patrick Le Fèvre, Luc Moreau, J. C. Alvarez-Quiceno, François Bertran, César González, Muriel Sicot, Bertrand Kierren, Julien E. Rault, Thomas Pierron, Geoffroy Kremer, Yannick Fagot-Revurat, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Fribourg Center for Nanomaterials, Département de Physique, Albert-Ludwigs-Universität Freiburg, Laboratory of Atomistic Simulation (LSIM), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Departamento de Fisica de Materiales, Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Systèmes hybrides de basse dimensionnalité (HYBRID), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Department of Physics [Fribourg], Université de Fribourg = University of Fribourg (UNIFR), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Departamento de Física de Materiales [Madrid], Universidad Autónoma de Madrid (UAM), Instituto de Magnetismo Aplicado, Groupe Modélisation et Théorie (GMT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Systèmes hybrides de basse dimensionnalité (NEEL - HYBRID), G. K. acknowledges financial support from the Swiss National Science Foundation (SNSF) Grant No. P00P2 170597. The DFT calculations were done using French supercomputers (GENCI, # 6194) and the Predictive Simulation Center facility that gathers in Grenoble SPINTEC, L Sim and Leti. We thanks Professor N. Mousseau for useful discussions. C. G. acknowledges finantial support from the Community of Madrid through the project NANOMAGCOST CM-S2018/NMT-4321., and ANR-14-OHRI-0004,2DTransformers,Matériaux bidimensionnels à changement de phase(2014)
- Subjects
bilayer ,Materials science ,Band gap ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Molecular physics ,law.invention ,law ,0103 physical sciences ,Photoemission spectroscopy ,General Materials Science ,010306 general physics ,Electronic band structure ,Silicon oxide ,Condensed Matter - Materials Science ,business.industry ,Graphene ,Mechanical Engineering ,Bilayer ,Wide-bandgap semiconductor ,Materials Science (cond-mat.mtrl-sci) ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Semiconductor ,Mechanics of Materials ,Density functional theory calculations ,2D silicon oxide film ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Density functional theory ,0210 nano-technology ,business - Abstract
Epitaxial bilayer silicon oxide is a transferable two-dimensional material predicted to be a wide band gap semiconductor, with potential applications for deep UV optoelectronics, or as a building block of van der Waals heterostructures. The prerequisite to any sort of such applications is the knowledge of the electronic band structure, which we unveil using angle-resolved photoemission spectroscopy and rationalize with the help of density functional theory (DFT) calculations. We discover dispersing bands related to electronic delocalization within the top and bottom planes of the material, with two linear crossings reminiscent of those predicted in bilayer AA-stacked graphene, and semi-flat bands stemming from the chemical bridges between the two planes. This band structure is robust against exposure to air, and can be controlled by exposure to oxygen. We provide an experimental lower-estimate of the band gap size of 5 eV and predict a full gap of 7.36 eV using DFT calculations.
- Published
- 2020
- Full Text
- View/download PDF
16. Tunable two-dimensional electron system at the (110) surface of SnO$_2$
- Author
-
Emmanouil Frantzeskakis, Franck Fortuna, Shamashis Sengupta, P. Le Fèvre, J. Dai, Julien E. Rault, Hiroshi Kumigashira, Martina Müller, Ryu Yukawa, François Bertran, Maximilian Thees, K. Horiba, Andrés F. Santander-Syro, and Patrick Lömker
- Subjects
Condensed Matter - Materials Science ,Surface oxygen ,Materials science ,Condensed matter physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Oxide ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,Crystal structure ,Conductivity ,021001 nanoscience & nanotechnology ,Electron system ,01 natural sciences ,Condensed Matter - Strongly Correlated Electrons ,chemistry.chemical_compound ,Charge-carrier density ,chemistry ,0103 physical sciences ,ddc:530 ,010306 general physics ,0210 nano-technology ,Conduction band - Abstract
Physical review / B 101(8), 085121 (1-10) (2020). doi:10.1103/PhysRevB.101.085121, We report the observation of a two-dimensional electron system (2DES) at the (110) surface of the transparent bulk insulator SnO$_2$ and the tunability of its carrier density by means of temperature or Eu deposition. The 2DES is insensitive to surface reconstructions and, surprisingly, it survives even after exposure to ambient conditions—an extraordinary fact recalling the well known catalytic properties SnO$_2$. Our data show that surface oxygen vacancies are at the origin of such 2DES, providing key information about the long-debated origin of n-type conductivity in SnO$_2$, at the basis of a wide range of applications. Furthermore, our study shows that the emergence of a 2DES in a given oxide depends on a delicate interplay between its crystal structure and the orbital character of its conduction band., Published by Inst., Woodbury, NY
- Published
- 2020
- Full Text
- View/download PDF
17. ARPES study of orbital character, symmetry breaking, and pseudogaps in doped and pure Sr2IrO4
- Author
-
Cyril Martins, Benjamin Lenz, Julien E. Rault, Silke Biermann, V. Brouet, Patrick Le Fèvre, François Bertran, Fabrice Bert, and A. Louat
- Subjects
Physics ,Condensed matter physics ,Fermi level ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Coupling (probability) ,01 natural sciences ,Brillouin zone ,symbols.namesake ,0103 physical sciences ,symbols ,Symmetry breaking ,010306 general physics ,0210 nano-technology ,Energy (signal processing) ,Intensity (heat transfer) ,Spin-½ - Abstract
${\mathrm{Sr}}_{2}{\mathrm{IrO}}_{4}$ is characterized by a large spin-orbit coupling, which gives rise to bands with strongly entangled spin and orbital characters, called ${\mathrm{J}}_{1/2}$ and ${\mathrm{J}}_{3/2}$. We use light-polarization dependent ARPES to study directly the orbital character of these bands and fully map out their dispersion. We observe bands in very good agreement with our cluster dynamical mean-field theory calculations. We show that the ${\mathrm{J}}_{1/2}$ band, the closest to the Fermi level ${E}_{F}$, is dominated by ${d}_{xz}$ character along ${k}_{x}$ and ${d}_{yz}$ along ${k}_{y}$. This is actually in agreement with an isotropic ${\mathrm{J}}_{1/2}$ character on average, but this large orbital dependence in $\mathbf{k}$ space was mostly overlooked before. It gives rise to strong modulations of the ARPES intensity that we explain and carefully take into account to compare dispersions in equivalent directions of the Brillouin zone. Although the latter dispersions look different at first, suggesting possible symmetry breakings, they are found essentially similar, once corrected for these intensity variations. In particular, the pseudogaplike features close to the $X$ point appearing in the nearly metallic 15% Rh-doped ${\mathrm{Sr}}_{2}{\mathrm{IrO}}_{4}$ strongly depend on experimental conditions. We reveal that there is nevertheless an energy scale of 30 meV below which spectral weight is suppressed, independent of the experimental conditions, which gives a reliable basis to analyze this behavior. We suggest it is caused by disorder.
- Published
- 2019
- Full Text
- View/download PDF
18. Electronic Structure of Heavy Halogen Atoms Adsorbed on the Cu(111) Surface: A Combined ARPES and First Principles Calculations Study
- Author
-
Bertrand Kierren, Sarah Xing, Geoffroy Kremer, Julien E. Rault, Giorgio Contini, Yannick Fagot-Revurat, Sébastien Lebègue, Daniel Malterre, Won June Kim, Patrick Le Fèvre, François Bertran, Muriel Sicot, Dario Rocca, Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Istituto di Struttura della Materia (CNR-ISM), Consiglio Nazionale delle Ricerche [Roma] (CNR), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), IMPACT N4S, and ANR-15-IDEX-0004,LUE,Isite LUE(2015)
- Subjects
Materials science ,Photoemission spectroscopy ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,Electronic structure ,010402 general chemistry ,DFT ,01 natural sciences ,Molecular physics ,Overlayer ,Ullmann coupling ,Atom ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Cu(111) ,[PHYS]Physics [physics] ,ARPES ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Brillouin zone ,General Energy ,Halogen ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Density functional theory ,Br ,0210 nano-technology - Abstract
International audience; By means of angle-resolved photoemission spectroscopy and density functional theory calculations, we investigate the electronic structure of a Br or I atom overlayer on the Cu(111) surface produced by the well-known Ullmann coupling reaction. We found that the iodine adsorbate induces two spin–orbit split highly dispersive bands, which are well-separated from the bulk Cu 3d bands, whereas the bromine-induced bands are flat and largely hybridized with the copper states. Also, our measured constant energy maps show that the I-induced bands have a parabolic shape in the whole surface Brillouin zone, which is confirmed by our calculations. Overall, the agreement between theory and experiments is excellent, giving new insights into the electronic structure of halogen atoms on noble metals and their possible influence on the molecular electronic structure.
- Published
- 2019
- Full Text
- View/download PDF
19. Ultralow Magnetic Damping in Co2Mn -Based Heusler Compounds: Promising Materials for Spintronics
- Author
-
Sébastien Petit-Watelot, Stéphane Andrieu, Jaafar Ghanbaja, A. M. Bataille, Juan-Carlos Rojas-Sánchez, P. Le Fèvre, François Bertran, D. Pierre, L. Pasquier, C. Guillemard, and Julien E. Rault
- Subjects
Magnonics ,Materials science ,Spintronics ,Condensed matter physics ,Relaxation (NMR) ,General Physics and Astronomy ,Fermi energy ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,01 natural sciences ,Magnetization ,Magnet ,0103 physical sciences ,Magnetic damping ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics ,0210 nano-technology - Abstract
The reduction of magnetic damping is one of the biggest challenges in low-energy-consumption spintronics and magnonics, in the pursuit of $e.g.$ low switching current for spin-transfer-torque-based technology, and long-range spin-wave propagation. This experimental study highlights ultralow damping values in high-quality epitaxial Co${}_{2}$Mn$Z$ ($Z$ = Al, Si, Ga, Ge, Sn, Sb) Heusler half-metallic magnets. As predicted theoretically, these ultralow values are intrinsically coupled to the underlying electronic structure. The width of the spin gap, as well as the location of the Fermi energy within it, play key roles in the relaxation of precessing magnetization.
- Published
- 2019
- Full Text
- View/download PDF
20. Electronic Band Structure of Ultimately Thin Silicon Oxide on Ru(0001)
- Author
-
César González, Geoffroy Kremer, Yannick J. Dappe, Daniel Malterre, Johann Coraux, Muriel Sicot, Thomas Pierron, Julien E. Rault, Yannick Fagot-Revurat, Bertrand Kierren, Juan Camilo Alvarez Quiceno, Patrick Le Fèvre, François Bertran, Pascal Pochet, Simone Lisi, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratory of Atomistic Simulation (LSIM ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Systèmes hybrides de basse dimensionnalité (HYBRID), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Groupe Modélisation et Théorie (GMT), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Systèmes hybrides de basse dimensionnalité (NEEL - HYBRID), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universidad Autónoma de Madrid (UAM), C. G. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities through the project MAT2017-88258-R and the 'Mariá de Maeztu' program for units of excellence in R & D (grant no. MDM-2014-0377)., and ANR-14-OHRI-0004,2DTransformers,Matériaux bidimensionnels à changement de phase(2014)
- Subjects
Materials science ,Photoemission spectroscopy ,Ultrathin silicon oxide film ,Oxide ,General Physics and Astronomy ,Metal-oxide interface ,FOS: Physical sciences ,02 engineering and technology ,Substrate (electronics) ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,symbols.namesake ,chemistry.chemical_compound ,Condensed Matter::Materials Science ,X-ray photoelectron spectroscopy ,General Materials Science ,Silicon oxide ,Electronic band structure ,Condensed Matter - Materials Science ,Fermi level ,General Engineering ,Monolayer ,Materials Science (cond-mat.mtrl-sci) ,Heterojunction ,021001 nanoscience & nanotechnology ,3. Good health ,0104 chemical sciences ,chemistry ,Chemical physics ,Density functional theory calculations ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
Silicon oxide can be formed in a crystalline form, when prepared on a metallic substrate. It is a candidate support catalyst and possibly the ultimately-thin version of a dielectric host material for two-dimensional materials (2D) and heterostructures. We determine the atomic structure and chemical bonding of the ultimately thin version of the oxide, epitaxially grown on Ru(0001). In particular, we establish the existence of two sub-lattices defined by metal-oxygen-silicon bridges involving inequivalent substrate sites. We further discover four electronic bands below Fermi level, at high binding energies, two of them forming a Dirac cone at K point, and two others forming semi-flat bands. While the latter two correspond to hybridized states between the oxide and the metal, the former relate to the topmost silicon-oxygen plane, which is not directly coupled to the substrate. Our analysis is based on high resolution X-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, scanning tunneling microscopy, and density functional theory calculations., Comment: Main part : 31 pages, 6 figures / Supporting information : 13 pages, 11 figures
- Published
- 2019
- Full Text
- View/download PDF
21. Evidence of direct electronic band gap in two-dimensional van der Waals indium selenide crystals
- Author
-
Federico Bisti, Jihene Zribi, Julien E. Rault, Abhay Shukla, Christine Giorgetti, Debora Pierucci, Julien Chaste, Jean-Christophe Girard, Fausto Sirotti, Abdelkarim Ouerghi, Luca Perfetti, François Bertran, Patrick Le Fèvre, Hugo Henck, Evangelos Papalazarou, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Pierre Aigrain (LPA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE24-0030,RhomboG,Propriétés electroniques de couches minces de graphite rhombohedrique(2017)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Photoemission spectroscopy ,Scanning tunneling spectroscopy ,FOS: Physical sciences ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,Electronic structure ,01 natural sciences ,symbols.namesake ,Effective mass (solid-state physics) ,Condensed Matter::Superconductivity ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,021001 nanoscience & nanotechnology ,Brillouin zone ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,symbols ,Direct and indirect band gaps ,van der Waals force ,0210 nano-technology - Abstract
Metal mono-chalcogenide compounds offer a large variety of electronic properties depending on chemical composition, number of layers and stacking-order. Among them, the InSe has attracted much attention due to the promise of outstanding electronic properties, attractive quantum physics, and high photo-response. Metal mono-chalcogenide compounds offer a large variety of electronic properties depending on chemical composition, number of layers and stacking-order. Among them, the InSe has attracted much attention due to the promise of outstanding electronic properties, attractive quantum physics, and high photo-response. Precise experimental determination of the electronic structure of InSe is sorely needed for better understanding of potential properties and device applications. Here, combining scanning tunneling spectroscopy (STS) and two-photon photoemission spectroscopy (2PPE), we demonstrate that InSe exhibits a direct band gap of about 1.25 eV located at the Gamma point of the Brillouin zone (BZ). STS measurements underline the presence of a finite and almost constant density of states (DOS) near the conduction band minimum (CBM) and a very sharp one near the maximum of the valence band (VMB). This particular DOS is generated by a poorly dispersive nature of the top valence band, as shown by angle resolved photoemission spectroscopy (ARPES) investigation. technologies. In fact, a hole effective mass of about m/m0 = -0.95 gammaK direction) was measured. Moreover, using ARPES measurements a spin-orbit splitting of the deeper-lying bands of about 0.35 eV was evidenced. These findings allow a deeper understanding of the InSe electronic properties underlying the potential of III-VI semiconductors for electronic and photonic
- Published
- 2019
- Full Text
- View/download PDF
22. Temperature-driven modification of surface electronic structure on bismuth, a topological border material
- Author
-
J. Kishi, Kiyohisa Tanaka, Yoshiyuki Ohtsubo, S. Ideta, Julien E. Rault, Yuki Yamashita, Shin-ichi Kimura, François Bertran, Hiroyuki Yamane, and P. Le Fèvre
- Subjects
Condensed Matter - Materials Science ,Valence (chemistry) ,Materials science ,Acoustics and Ultrasonics ,Condensed matter physics ,chemistry.chemical_element ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,Electronic structure ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Bismuth ,Brillouin zone ,chemistry ,0103 physical sciences ,Topological order ,010306 general physics ,0210 nano-technology ,Surface states - Abstract
Single crystalline bismuth (Bi) is known to have a peculiar electronic structure which is very close to the topological phase transition. The modification of the surface states of Bi depending on the temperature are revealed by angle-resolved photoelectron spectroscopy (ARPES). At low temperature, the upper branch of the surface state merged to the projected bulk conduction bands around the $\bar{M}$ point of the surface Brillouin zone (SBZ). In contrast, the same branch merged to the projected bulk valence bands at high temperature (400 K). Such behavior could be interpreted as a topological phase transition driven by the temperature, which might be applicable for future spin-thermoelectric devices. We discuss the possible mechanisms to cause such transition, such as the thermal lattice distortion and electron-phonon coupling., 15 pages with 6 figures (single column)
- Published
- 2019
23. Surface Kondo effect and non-trivial metallic state of the Kondo insulator YbB12
- Author
-
S. Ideta, Fumitoshi Iga, Amina Taleb-Ibrahimi, Koji Horiba, Masaharu Matsunami, Ryu Yukawa, Hidetoshi Miyazaki, Patrick Le Fèvre, Kenta Hagiwara, François Bertran, Julien E. Rault, Hiroshi Kumigashira, Kiyohisa Tanaka, Shin-ichi Kimura, Taichi Okuda, Masaki Kobayashi, Kazuki Sumida, and Yoshiyuki Ohtsubo
- Subjects
Surface (mathematics) ,Science ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Condensed Matter - Strongly Correlated Electrons ,0103 physical sciences ,Topological order ,010306 general physics ,Quantum ,Surface states ,Physics ,Multidisciplinary ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed matter physics ,Electronic correlation ,Kondo insulator ,General Chemistry ,021001 nanoscience & nanotechnology ,Brillouin zone ,Condensed Matter::Strongly Correlated Electrons ,Kondo effect ,0210 nano-technology - Abstract
A synergistic effect between strong electron correlation and spin-orbit interaction (SOI) has been theoretically predicted to result in a new topological state of quantum matter on Kondo insulators (KIs), so-called topological Kondo insulators (TKIs). One TKI candidate has been experimentally observed on the KI SmB6(001), and the origin of the surface states (SS) and the topological order of SmB6 has been actively discussed. Here, we show a metallic SS on the clean surface of another TKI candidate YbB12(001), using angle-resolved photoelectron spectroscopy. The SS showed temperature-dependent reconstruction corresponding with the Kondo effect observed for bulk states. Despite the low-temperature insulating bulk, the reconstructed SS with c-f hybridization was metallic, forming a closed Fermi contour surrounding $\bar{\Gamma}$ on the surface Brillouin zone and agreeing with the theoretically expected behavior for SS on TKIs. These results demonstrate the temperature-dependent holistic reconstruction of two-dimensional states localized on KIs surface driven by the Kondo effect., Comment: 15 pages, 4 figures
- Published
- 2016
24. Coherent and incoherent bands in La and Rh doped Sr3Ir2O7
- Author
-
Julien E. Rault, Dorothée Colson, L. Fruchter, V. Brouet, A. Louat, François Bertran, A. Forget, L. Serrier-Garcia, and P. Le Fèvre
- Subjects
Physics ,Fermi level ,Context (language use) ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,Degree of coherence ,021001 nanoscience & nanotechnology ,Coupling (probability) ,01 natural sciences ,Crystallography ,symbols.namesake ,0103 physical sciences ,Quasiparticle ,symbols ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics ,0210 nano-technology ,Electronic band structure ,Energy (signal processing) - Abstract
In ${\mathrm{Sr}}_{2}{\mathrm{IrO}}_{4}$ and ${\mathrm{Sr}}_{3}{\mathrm{Ir}}_{2}{\mathrm{O}}_{7}$, correlations, magnetism, and spin-orbit coupling compete on similar energy scales, creating a new context to study metal-insulator transitions (MIT). We use here angle-resolved photoemission to investigate the MIT as a function of hole and electron doping in ${\mathrm{Sr}}_{3}{\mathrm{Ir}}_{2}{\mathrm{O}}_{7}$, obtained respectively by Ir/Rh and Sr/La substitutions. We show that there is a clear reduction as a function of doping of the gap between a lower and upper band on both sides of the Fermi level, from 0.2 to 0.05 eV. Although these two bands have a counterpart in band structure calculations, they are characterized by a very different degree of coherence. The upper band exhibits clear quasiparticle peaks, while the lower band is very broad and loses weight as a function of doping. Moreover, their ARPES spectral weights obey different periodicities, reinforcing the idea of their different nature. We argue that a very similar situation occurs in ${\mathrm{Sr}}_{2}{\mathrm{IrO}}_{4}$ and conclude that the physics of the two families is essentially the same.
- Published
- 2018
- Full Text
- View/download PDF
25. Atomic-layer-resolved composition and electronic structure of the cuprate Bi2Sr2CaCu2O8+δ from soft x-ray standing-wave photoemission
- Author
-
Charles S. Fadley, Eric M. Gullikson, Aaron Bostwick, Jeffrey B. Kortright, Shu-Ting Pi, Julia Meyer-Ilse, Slavomír Nemšák, Warren E. Pickett, Patrick Le Fèvre, Cheng-Tai Kuo, S.-C. Lin, Ivan A. Vartanyants, François Bertran, Luca Moreschini, Amina Taleb-Ibrahimi, G. Conti, R. Saint-Martin, Julien E. Rault, and Andrés F. Santander-Syro
- Subjects
Superconductivity ,Valence (chemistry) ,Materials science ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,Standing wave ,0103 physical sciences ,Coulomb ,Density functional theory ,Cuprate ,010306 general physics ,0210 nano-technology ,Excitation - Abstract
Author(s): Kuo, CT; Lin, SC; Conti, G; Pi, ST; Moreschini, L; Bostwick, A; Meyer-Ilse, J; Gullikson, E; Kortright, JB; Nemsak, S; Rault, JE; Le Fevre, P; Bertran, F; Santander-Syro, AF; Vartanyants, IA; Pickett, WE; Saint-Martin, R; Taleb-Ibrahimi, A; Fadley, CS | Abstract: A major remaining challenge in the superconducting cuprates is the unambiguous differentiation of the composition and electronic structure of the CuO2 layers and those of the intermediate layers. The large c axis for these materials permits employing soft x-ray (930.3 eV) standing wave (SW) excitation in photoemission that yields atomic layer-by-layer depth resolution of these properties. Applying SW photoemission to Bi2Sr2CaCu2O8+δ yields the depth distribution of atomic composition and the layer-resolved densities of states. We detect significant Ca presence in the SrO layers and oxygen bonding to three different cations. The layer-resolved valence electronic structure is found to be strongly influenced by the atomic supermodulation structure, as determined by comparison to density functional theory calculations, by Ca-Sr intermixing, and by correlation effects associated with the Cu 3d-3d Coulomb interaction, further clarifying the complex interactions in this prototypical cuprate. Measurements of this type for other quasi-two-dimensional materials with large c represent a promising future direction.
- Published
- 2018
- Full Text
- View/download PDF
26. Lifetime Stability and Microstructure Properties of Cr/B₄C X-ray Reflective Multilayer Coatings
- Author
-
Catherine, Burcklen, Regina, Soufli, Jennifer, Rebellato, Christopher, Walton, Evgueni, Meltchakov, Julien E, Rault, Eric, Gullikson, and Franck, Delmotte
- Abstract
This paper demonstrates that highly reflective Cr/B₄C multilayer interference coatings with nanometric layer thicknesses, designed to operate in the soft X-ray photon energy range, have stable reflective performance for a period of 3 years after deposition. The microstructure and chemical composition of layers and interfaces within Cr/B₄C multilayers is also examined, with emphasis on the B₄C-on-Cr interface where a significant diffusion layer is formed and on the oxide in the top B₄C layer. Multiple characterization techniques (X-ray reflectivity at different photon energies, X-ray photoelectron spectroscopy, transmission electron microscopy, electron diffraction and X-ray diffraction) are employed and the results reveal a consistent picture of the Cr/B₄C layer structure.
- Published
- 2018
27. Interface properties and built-in potential profile of a LaCrO3/SrTiO3 superlattice determined by standing-wave excited photoemission spectroscopy
- Author
-
Mark E. Bowden, Charles S. Fadley, J. B. Kortright, A. Taleb, PV Sushko, Eric M. Gullikson, Slavomír Nemšák, Scott A. Chambers, Julien E. Rault, Lukasz Plucinski, Cheng-Tai Kuo, S.-C. Lin, Julia Meyer-Ilse, Jean-Pascal Rueff, Ryan B. Comes, Steven R. Spurgeon, and M. Gehlmann
- Subjects
Physics ,Photoemission spectroscopy ,Superlattice ,Heterojunction ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,Spectral line ,Crystallography ,Excited state ,0103 physical sciences ,Density functional theory ,010306 general physics ,0210 nano-technology ,Spectroscopy - Abstract
$\mathrm{LaCr}{\mathrm{O}}_{3}\phantom{\rule{0.28em}{0ex}}(\mathrm{LCO})/\mathrm{SrTi}{\mathrm{O}}_{3}\phantom{\rule{0.28em}{0ex}}(\mathrm{STO})$ heterojunctions are intriguing due to a polar discontinuity along $[001]$, exhibiting two distinct and controllable charged interface structures [${(\mathrm{LaO})}^{+}/{(\mathrm{Ti}{\mathrm{O}}_{2})}^{0}$ and ${(\mathrm{SrO})}^{0}/{(\mathrm{Cr}{\mathrm{O}}_{2})}^{\ensuremath{-}}$] with induced polarization, and a resulting depth-dependent potential. In this study, we have used soft- and hard-x-ray standing-wave excited photoemission spectroscopy (SW-XPS) to quantitatively determine the elemental depth profile, interface properties, and depth distribution of the polarization-induced built-in potentials. We observe an alternating charged interface configuration: a positively charged ${(\mathrm{LaO})}^{+}/{(\mathrm{Ti}{\mathrm{O}}_{2})}^{0}$ intermediate layer at the $\mathrm{LC}{\mathrm{O}}_{\mathrm{top}}/\mathrm{ST}{\mathrm{O}}_{\mathrm{bottom}}$ interface and a negatively charged ${(\mathrm{SrO})}^{0}/{(\mathrm{Cr}{\mathrm{O}}_{2})}^{\ensuremath{-}}$ intermediate layer at the $\mathrm{ST}{\mathrm{O}}_{\mathrm{top}}/\mathrm{LC}{\mathrm{O}}_{\mathrm{bottom}}$ interface. Using core-level SW data, we have determined the depth distribution of species, including through the interfaces, and these results are in excellent agreement with scanning transmission electron microscopy and electron energy-loss spectroscopy mapping of local structure and composition. SW-XPS also enabled deconvolution of the LCO and STO contributions to the valence-band (VB) spectra. Using a two-step analytical approach involving first SW-induced core-level binding-energy shifts and then VB modeling, the variation in potential across the complete superlattice is determined in detail. This potential is in excellent agreement with density functional theory models, confirming this method as a generally useful tool for interface studies.
- Published
- 2018
- Full Text
- View/download PDF
28. Formation of an incoherent metallic state in Rh-doped Sr2IrO4
- Author
-
P. Le Fèvre, Julien E. Rault, Fabrice Bert, V. Brouet, François Bertran, A. Louat, and L. Serrier-Garcia
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Condensed matter physics ,Mott insulator ,Fermi level ,Doping ,Fermi surface ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Metal ,symbols.namesake ,visual_art ,0103 physical sciences ,Quasiparticle ,symbols ,visual_art.visual_art_medium ,Condensed Matter::Strongly Correlated Electrons ,Fermi liquid theory ,010306 general physics ,0210 nano-technology ,Pseudogap - Abstract
${\mathrm{Sr}}_{2}{\mathrm{IrO}}_{4}$ is the archetype of the spin-orbit Mott insulator, but the nature of the metallic states that may emerge from this type of insulator is still not very well known. We study with angle-resolved photoemission the insulator-to-metal transition observed in ${\mathrm{Sr}}_{2}{\mathrm{Ir}}_{1\ensuremath{-}x}{\mathrm{Rh}}_{x}{\mathrm{O}}_{4}$ when Ir is substituted by Rh ($0.02lxl0.35$). The originality of the Rh doping is that Ir and Rh, which are formally isovalent, adopt different charge states, a rather unusual and inhomogeneous situation. We show that the evolution to the metallic state can be essentially understood as a shift of the Fermi level into the lower Hubbard band of ${\mathrm{Sr}}_{2}{\mathrm{IrO}}_{4}$. The Mott gap appears quite insensitive to the introduction of up to $\ensuremath{\sim}20%$ holes in this band. The metallic phase, which forms for $xg0.07$, is not a Fermi liquid. It is characterized by the absence of quasiparticles, unrenormalized band dispersion compared to calculations, and an $\ensuremath{\sim}30\text{\ensuremath{-}}\mathrm{meV}$ pseudogap on the entire Fermi surface.
- Published
- 2018
- Full Text
- View/download PDF
29. Electronic band structure of Two-Dimensional WS 2 /Graphene van der Waals Heterostructures
- Author
-
Feriel Laourine, Hugo Henck, Patrick Le Fèvre, François Bertran, Zeineb Ben Aziza, Francesco Reale, Taro Wakamura, Julien E. Rault, Debora Pierucci, Matteo Calandra, Abdelkarim Ouerghi, Julien Chaste, Mathieu G. Silly, Cecilia Mattevi, Emmanuel Lhuillier, Pawel Palczynski, Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), ALBA Synchrotron light source [Barcelone], Imperial College London, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Physico-chimie et dynamique des surfaces (INSP-E6), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Spectroscopie des nouveaux états quantiques (INSP-E2), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE24-0016,H2DH,Hétérostructures bi-dimendionnelles hybrides pour l'optoélectronique(2015), Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Engineering & Physical Science Research Council (EPSRC)
- Subjects
Electronic structure, Semiconductors ,2-dimensional systems, Transition-metal dichalcogenide ,Photoemission spectroscopy ,Electronic structure ,Van der waals heterostructures ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,law.invention ,Condensed Matter::Materials Science ,law ,0103 physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Spectroscopy ,Electronic band structure ,[PHYS]Physics [physics] ,Physics ,Condensed Matter - Materials Science ,Condensed matter physics ,Graphene ,2-dimensional systems ,Materials Science (cond-mat.mtrl-sci) ,Heterojunction ,Transition-metal dichalcogenide ,021001 nanoscience & nanotechnology ,Hybrid functional ,Semiconductors ,Density functional theory ,0210 nano-technology - Abstract
Combining single-layer two-dimensional semiconducting transition metal dichalcogenides (TMDs) with graphene layer in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these heterostructures. Here, we report the electronic and structural properties of transferred single layer WS2 on epitaxial graphene using micro-Raman spectroscopy, angle-resolved photoemission spectroscopy measurements (ARPES) and Density Functional Theory (DFT) calculations. The results show good electronic properties as well as well-defined band arising from the strong splitting of the single layer WS2 valence band at K points, with a maximum splitting of 0.44 eV. By comparing our DFT results with local and hybrid functionals, we find the top valence band of the experimental heterostructure is close to the calculations for suspended single layer WS2. . Our results provide an important reference for future studies of electronic properties of WS2 and its applications in valleytronic devices., Comment: 11 pages, 3 figures + SI 7 pages 8 figures
- Published
- 2018
- Full Text
- View/download PDF
30. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces
- Author
-
Sergio Valencia, Maria Varela, Radu Abrudan, Manuel Bibes, Ashima Arora, Julien Varignon, Julien E. Rault, Enrico Schierle, Jean-Pascal Rueff, Eugen Weschke, Agnès Barthélémy, Jacobo Santamaria, Gabriel Sanchez-Santolino, and Mathieu N. Grisolia
- Subjects
Physics ,Valence (chemistry) ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed matter physics ,Magnetism ,Doping ,Oxide ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,01 natural sciences ,Article ,Titanate ,Condensed Matter - Strongly Correlated Electrons ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,Band bending ,chemistry ,0103 physical sciences ,Coulomb ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics ,0210 nano-technology - Abstract
At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from correlations between transition metal and oxygen ions. Strong correlations thus offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metaloxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence., Work supported by ERC Consolidator grant MINT (Contract No. 615759)
- Published
- 2016
- Full Text
- View/download PDF
31. Depth Profiling Charge Accumulation from a Ferroelectric into a Doped Mott Insulator
- Author
-
Gunnar K. Pálsson, Hiroyuki Yamada, Stéphane Fusil, Manuel Bibes, Jean-Pascal Rueff, Julien E. Rault, Katia March, Alexandre Gloter, Maya Marinova, Vincent Garcia, Slavomír Nemšák, Christian Colliex, Charles S. Fadley, Agnès Barthélémy, C. Carrétéro, Odile Stéphan, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), ILL, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, ANR-11-BS10-0016,NOMILOPS,Nouvelles interfaces magnétoélectriques pour la spintronique faible puissance(2011), European Project: 312483,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2012-1,ESTEEM 2(2012), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and THALES [France]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Photoemission spectroscopy ,Oxide ,FOS: Physical sciences ,Bioengineering ,Nanotechnology ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,Electric field ,Scanning transmission electron microscopy ,[CHIM]Chemical Sciences ,General Materials Science ,Condensed Matter - Materials Science ,business.industry ,Mechanical Engineering ,Mott insulator ,Electron energy loss spectroscopy ,Materials Science (cond-mat.mtrl-sci) ,Charge density ,General Chemistry ,Condensed Matter Physics ,Ferroelectricity ,chemistry ,ddc:540 ,Optoelectronics ,business - Abstract
The electric field control of functional properties is a crucial goal in oxide-based electronics. Non-volatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion from an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects. Here we use a first-of-a-kind combination of scanning transmission electron microscopy with electron energy loss spectroscopy, near-total-reflection hard X-ray photoemission spectroscopy, and ab-initio theory to address this issue. We achieve a direct, quantitative, atomic-scale characterization of the polarization-induced charge density changes at the interface between the ferroelectric BiFeO3 and the doped Mott insulator Ca1-xCexMnO3, thus providing insight on how interface-engineering can enhance these switching effects., Work supported by ERC Consolidator grant MINT (Contract No. 615759)
- Published
- 2015
- Full Text
- View/download PDF
32. Band structure and Fermi surfaces of the reentrant ferromagnetic superconductor Eu(Fe0.86Ir0.14)2As2
- Author
-
U. B. Paramanik, P. Le Fèvre, V. Brouet, Zakir Hossain, Muriel Sicot, Julien E. Rault, Daniel Malterre, François Bertran, J. Mansart, A. Chainani, Yannick Fagot-Revurat, Sarah Xing, and Bertrand Kierren
- Subjects
Physics ,Superconductivity ,Crystallography ,Photoemission spectroscopy ,Doping ,Scanning tunneling spectroscopy ,Fermi surface ,Electronic structure ,Electronic band structure ,Ferromagnetic superconductor - Abstract
The electronic structure of the reentrant superconductor $\mathrm{Eu}({\mathrm{Fe}}_{0.86}{\mathrm{Ir}}_{0.14}$)${}_{2}{\mathrm{As}}_{2}$ (${T}_{c}=22$ K) with coexisting ferromagnetic order (${T}_{M}=18$ K) is investigated using angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy. We study the in-plane and out-of-plane band dispersions and Fermi surface (FS) of $\mathrm{Eu}{({\mathrm{Fe}}_{0.86}{\mathrm{Ir}}_{0.14})}_{2}{\mathrm{As}}_{2}$. The near-${E}_{F}$ Fe-$3d$-derived band dispersions near the $\mathrm{\ensuremath{\Gamma}}$ and $X$ high-symmetry points show changes due to Ir substitution, but the FS topology is preserved. From momentum-dependent measurements of the superconducting gap measured at $T=5$ K, we estimate an essentially isotropic $s$-wave gap ($\mathrm{\ensuremath{\Delta}}\ensuremath{\sim}5.25\ifmmode\pm\else\textpm\fi{}0.25$ meV), indicative of strong-coupling superconductivity with $2\mathrm{\ensuremath{\Delta}}/{k}_{B}{T}_{c}\ensuremath{\simeq}5.8$. The gap gets closed at temperatures $T\ensuremath{\ge}10$ K, and this is attributed to the resistive phase which sets in at ${T}_{M}=18$ K due to the ${\mathrm{Eu}}^{2+}$-derived magnetic order. The modification of the FS with Ir substitution clearly indicates an effective hole doping with respect to the parent compound.
- Published
- 2017
- Full Text
- View/download PDF
33. Spin-polarized quasi-one-dimensional state with finite band gap on the Bi/InSb(001) surface
- Author
-
Yoshiyuki Ohtsubo, Shin-ichi Kimura, M. Nurmamat, Julien E. Rault, François Bertran, Kiyohisa Tanaka, Ayumi Harasawa, Shik Shin, P. Le Fèvre, Koichiro Yaji, Hiroyuki Yamane, J. Kishi, Fumio Komori, Takuto Nakamura, A. Taleb-Ibrahimi, and S. Ideta
- Subjects
Surface (mathematics) ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Band gap ,02 engineering and technology ,State (functional analysis) ,021001 nanoscience & nanotechnology ,01 natural sciences ,0103 physical sciences ,General Materials Science ,Quasi one dimensional ,010306 general physics ,0210 nano-technology ,Spin-½ - Published
- 2017
- Full Text
- View/download PDF
34. Interface dipole and band bending in the hybrid p−n heterojunction MoS2/GaN(0001)
- Author
-
Carl H. Naylor, Hugo Henck, Julien E. Rault, Mathieu G. Silly, Fabrice Oehler, Julien Brault, A. T. Charlie Johnson, Patrick Le Fèvre, François Bertran, Stéphane Berciaud, Olivia Zill, Stéphane Collin, Abdelkarim Ouerghi, Noelle Gogneau, Fausto Sirotti, Zeineb Ben Aziza, Debora Pierucci, and Emmanuel Lhuillier
- Subjects
Materials science ,Photoemission spectroscopy ,business.industry ,Fermi level ,Angle-resolved photoemission spectroscopy ,Heterojunction ,02 engineering and technology ,Electronic structure ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Condensed Matter::Materials Science ,symbols.namesake ,Dipole ,Band bending ,Condensed Matter::Superconductivity ,Monolayer ,symbols ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,business - Abstract
Hybrid heterostructures based on bulk GaN and two-dimensional (2D) materials offer novel paths toward nanoelectronic devices with engineered features. Here, we study the electronic properties of a mixed-dimensional heterostructure composed of intrinsic n-doped MoS2 flakes transferred on p-doped GaN(0001) layers. Based on angle-resolved photoemission spectroscopy (ARPES) and high resolution x-ray photoemission spectroscopy (HR-XPS), we investigate the electronic structure modification induced by the interlayer interactions in MoS2/GaN heterostructure. In particular, a shift of the valence band with respect to the Fermi level for MoS2/GaN heterostructure is observed, which is the signature of a charge transfer from the 2D monolayer MoS2 to GaN. The ARPES and HR-XPS revealed an interface dipole associated with local charge transfer from the GaN layer to the MoS2 monolayer. Valence and conduction band offsets between MoS2 and GaN are determined to be 0.77 and −0.51eV, respectively. Based on the measured work functions and band bendings, we establish the formation of an interface dipole between GaN and MoS2 of 0.2 eV.
- Published
- 2017
- Full Text
- View/download PDF
35. Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides
- Author
-
Veronika Sunko, Jiagui Feng, Federico Mazzola, Julien E. Rault, M. Leandersson, Igor Marković, Justin W. Wells, Jun Fujii, Bohm-Jung Yang, Kenjiro Okawa, Philip D. C. King, J. M. Riley, L. Bawden, S. P. Cooil, Thiagarajan Balasubramanian, Mohammad Saeed Bahramy, T. Eknapakul, O. J. Clark, M. R. Jorge, M. Asakawa, Timur K. Kim, Ivana Vobornik, Takao Sasagawa, Moritz Hoesch, Worawat Meevasana, Deepnarayan Biswas, The Leverhulme Trust, EPSRC, The Royal Society, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. Condensed Matter Physics
- Subjects
Surface (mathematics) ,Materials science ,Field (physics) ,Dirac (software) ,FOS: Physical sciences ,02 engineering and technology ,Topology ,01 natural sciences ,law.invention ,Settore FIS/03 - Fisica della Materia ,Superconductivity (cond-mat.supr-con) ,symbols.namesake ,law ,0103 physical sciences ,QD ,General Materials Science ,010306 general physics ,R2C ,QC ,Surface states ,Spin-½ ,Superconductivity ,Condensed Matter - Materials Science ,Graphene ,Mechanical Engineering ,Condensed Matter - Superconductivity ,~DC~ ,Settore FIS/01 - Fisica Sperimentale ,Materials Science (cond-mat.mtrl-sci) ,DAS ,General Chemistry ,QD Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,T Technology ,QC Physics ,Dirac fermion ,Mechanics of Materials ,symbols ,Condensed Matter::Strongly Correlated Electrons ,BDC ,0210 nano-technology - Abstract
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied properties. They range from metals and superconductors to strongly spin-orbit-coupled semiconductors and charge-density-wave systems, with their single-layer variants one of the most prominent current examples of two-dimensional materials beyond graphene. Their varied ground states largely depend on the transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle- resolved photoemission, we find that these generically host type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics., 10 pages, 4 figures
- Published
- 2017
- Full Text
- View/download PDF
36. Exploring interlayer Dirac cone coupling in commensurately rotated few-layer graphene on SiC(000-1)
- Author
-
Feng Wang, Vitaliy Feyer, Olivier Renault, Julien E. Rault, Claus M. Schneider, Nicholas Barrett, Edward H. Conrad, and Claire Mathieu
- Subjects
Diffraction ,Materials science ,Condensed matter physics ,Graphene ,Superlattice ,Dirac (software) ,02 engineering and technology ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Rotation ,01 natural sciences ,Surfaces, Coatings and Films ,law.invention ,Brillouin zone ,Condensed Matter::Materials Science ,Reciprocal lattice ,law ,0103 physical sciences ,Materials Chemistry ,010306 general physics ,0210 nano-technology ,Electronic band structure - Abstract
We investigate electronic band-structure images in reciprocal space of few-layer graphene epitaxially grown on SiC(000-1). In addition to the observation of commensurate rotation angles of the graphene layers, the k-space images recorded near the Fermi edge highlight structures originating from diffraction of the Dirac cones due to the relative rotation of adjacent layers. The 21.9° and 27° rotation angles between two sheets of graphene are responsible for a periodic pattern that can be described with a superlattice unit cells. The superlattice generates replicas of Dirac cones with smaller wave vectors, because of a Brillouin zone folding. Copyright © 2014 John Wiley & Sons, Ltd.
- Published
- 2014
- Full Text
- View/download PDF
37. Enhancement of photovoltaic efficiency by insertion of a polyoxometalate layer at the anode of an organic solar cell
- Author
-
Denis Fichou, Guillaume Izzet, Anna Proust, Nicholas Barrett, Julien E. Rault, Q. Zhu, M. Alaaeddine, Ludovic Tortech, Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Innovation en Chimie des Surfaces et NanoSciences (LICSEN UMR 3685), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude des NanoStructures et Imagerie de Surface (LENSIS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Innovation en Chimie des Surfaces et NanoSciences (LICSEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Condensed Matter - Materials Science ,Materials science ,Organic solar cell ,Photovoltaic system ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Physics - Applied Physics ,Applied Physics (physics.app-ph) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,7. Clean energy ,Polymer solar cell ,Anode ,Indium tin oxide ,Inorganic Chemistry ,X-ray photoelectron spectroscopy ,Chemical engineering ,Polyoxometalate ,Layer (electronics) - Abstract
In this article the Wells-Dawson polyoxometalate K6[P2W18O62] is grown as an interfacial layer between indium tin oxide and bulk heterojunction of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The structure of the POM layers depends on the thickness and shows a highly anisotropic surface organization. The films have been characterized by atomic force microscopy and X-ray photoelectron spectroscopy (XPS) to gain insight into their macroscopic organization and better understand their electronic properties. Then, they were put at the anodic interface of a P3HT:PCBM organic solar cell and characterized on an optical bench. The photovoltaic efficiency is discussed in terms of the benefit of the polyoxometalate at the anodic interface of an organic photovoltaic cell., Comment: 7 pages, 6 figures
- Published
- 2014
- Full Text
- View/download PDF
38. The structure and evolution of semiconducting buffer graphene grown on SiC(0001)
- Author
-
E. H. Conrad, Matthew Conrad, Paul F. Miceli, Alina Vlad, Yuki Utsumi, Alessandro Coati, Julien E. Rault, Yves Garreau, and Jean-Pascal Rueff
- Subjects
010302 applied physics ,Condensed Matter - Materials Science ,Materials science ,business.industry ,Graphene ,Bilayer ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Nanotechnology ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Reflectivity ,Monolayer graphene ,Buffer (optical fiber) ,law.invention ,Standing wave ,law ,Covalent bond ,0103 physical sciences ,Optoelectronics ,0210 nano-technology ,business - Abstract
Using highly controlled coverages of graphene on SiC(0001), we have studied the structure of the first graphene layer that grows on the SiC interface. This layer, known as the buffer layer, is semiconducting. Using x-ray reflectivity and x-ray standing waves analysis we have performed a comparative study of the buffer layer structure with and without an additional monolayer graphene layer above it. We show that no more than 26\% of the buffer carbon is covalently bonded to Si in the SiC interface. We also show that the top SiC bilayer is Si depleted and is the likely the cause of the incommensuration previously observed in this system. When a monolayer graphene layer forms above the buffer, the buffer layer becomes less corrugated with signs of a change in the bonding geometry with the SiC interface. At the same time, the entire SiC interface becomes more disordered, presumably due to entropy associated with the higher growth temperature., Comment: 12 pages, 9 figures
- Published
- 2017
- Full Text
- View/download PDF
39. Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidateMoxW1−xTe2
- Author
-
Tay-Rong Chang, Julien E. Rault, Daniel S. Sanchez, Shik Shin, Patrick Le Fèvre, François Bertran, Guanghou Wang, Hsin Lin, Madhab Neupane, Adam Kaminski, Chi-Cheng Lee, Guoqing Chang, Yun Wu, Hao Zheng, Horng-Tay Jeng, Fengqi Song, Ilya Belopolski, Nasser Alidoust, Su-Yang Xu, Baigeng Wang, Xingchen Pan, Guang Bian, Nan Yao, Yao Wen Yeh, Daixiang Mou, Takeshi Kondo, Peng Yu, M. Zahid Hasan, Shin-Ming Huang, Lunan Huang, Zheng Liu, You Song, and Yukiaki Ishida
- Subjects
Physics ,Condensed matter physics ,Fermi level ,Weyl semimetal ,02 engineering and technology ,Fermion ,Electronic structure ,Mathematics::Spectral Theory ,Lorentz covariance ,021001 nanoscience & nanotechnology ,01 natural sciences ,Semimetal ,symbols.namesake ,Quantum mechanics ,0103 physical sciences ,symbols ,Condensed Matter::Strongly Correlated Electrons ,Mathematics::Representation Theory ,010306 general physics ,0210 nano-technology ,Electronic band structure ,Fermi Gamma-ray Space Telescope - Abstract
Members of the Mo${}_{x}$W${}_{1-x}$Te${}_{2}$ series are predicted to be Weyl semimetals, hosting type-II Weyl fermions, which have yet to be experimentally realized and which are unusual because they strongly violate Lorentz invariance. Crucially, the Weyl points in this system are predicted to sit above the Fermi level. Here, the authors show that for a type-II Weyl cone, although not for a type-I Weyl cone, if the Weyl point is above the Fermi level, then it's necessary to see the band structure above the Fermi level to observe a topological Fermi arc. The authors also discover that pump-probe angle-resolved photoemission beautifully displays the unoccupied band structure in Mo${}_{x}$W${}_{1-x}$Te${}_{2}$. Their work sets the stage for demonstrating that this system is the first type-II Weyl semimetal, as well as the first tunable Weyl semimetal.
- Published
- 2016
- Full Text
- View/download PDF
40. Influence of the ferroelectric polarization on the electronic structure of BaTiO3 thin films
- Author
-
I. Krug, Nicholas Barrett, Julien E. Rault, D. Albertini, Brice Gautier, O. Renault, Philippe Lecoeur, Bertrand Vilquin, and Gang Niu
- Subjects
Condensed matter physics ,Chemistry ,Mineralogy ,Synchrotron radiation ,Surfaces and Interfaces ,General Chemistry ,Electronic structure ,Condensed Matter Physics ,Ferroelectricity ,Surfaces, Coatings and Films ,Photoemission electron microscopy ,X-ray photoelectron spectroscopy ,Materials Chemistry ,Work function ,Surface charge ,Thin film - Abstract
Micron scale ferroelectric (FE) domains have been written into a 20-nm-thick epitaxial thin film of BaTiO3 (001) [BTO(001)] on a Nb-doped SrTiO3 substrate using a piezoforce microscope (PFM). The domain-dependent electronic structure has been studied using fully energy-filtered photoemission electron microscopy (PEEM) and synchrotron radiation. Shifts, induced by FE polarization, of up to 300 meV were observed in the work function of the sample. The surface is Ba-O terminated. Polarization-induced distortion of the electronic structure was observed in the valence band and on the Ba 3d, Ti 2p and O 1s core levels of BTO. Polarization-dependent surface adsorption was observed. A simple electrostatic model based on net surface charge is not sufficient to explain the observed modifications in the electronic levels. Copyright © 2010 John Wiley & Sons, Ltd.
- Published
- 2010
- Full Text
- View/download PDF
41. Characterization of free-standing InAs quantum membranes by standing wave hard x-ray photoemission spectroscopy
- Author
-
Hui Fang, Osman Karslıoğlu, Mathias Gehlmann, A. Rattanachata, Julien E. Rault, Hendrik Bluhm, J. Mueller, G. Conti, James A. Sethian, Jean-Pascal Rueff, Cheng-Tai Kuo, C. Conlon, A. Keqi, Slavomír Nemšák, Ali Javey, and Charles S. Fadley
- Subjects
Materials science ,Photoemission spectroscopy ,lcsh:Biotechnology ,Oxide ,02 engineering and technology ,01 natural sciences ,Molecular physics ,chemistry.chemical_compound ,X-ray photoelectron spectroscopy ,lcsh:TP248.13-248.65 ,0103 physical sciences ,General Materials Science ,Electrical and Electronic Engineering ,Spectroscopy ,010302 applied physics ,business.industry ,Mechanical Engineering ,General Engineering ,Heterojunction ,Materials Engineering ,021001 nanoscience & nanotechnology ,cond-mat.mtrl-sci ,lcsh:QC1-999 ,Chemical state ,Semiconductor ,chemistry ,X-ray crystallography ,0210 nano-technology ,business ,ddc:600 ,lcsh:Physics - Abstract
© 2018 Author(s). Free-standing nanoribbons of InAs quantum membranes (QMs) transferred onto a (Si/Mo) multilayer mirror substrate are characterized by hard x-ray photoemission spectroscopy (HXPS) and by standing-wave HXPS (SW-HXPS). Information on the chemical composition and on the chemical states of the elements within the nanoribbons was obtained by HXPS and on the quantitative depth profiles by SW-HXPS. By comparing the experimental SW-HXPS rocking curves to x-ray optical calculations, the chemical depth profile of the InAs(QM) and its interfaces were quantitatively derived with ångström precision. We determined that (i) the exposure to air induced the formation of an InAsO4 layer on top of the stoichiometric InAs(QM); (ii) the top interface between the air-side InAsO4 and the InAs(QM) is not sharp, indicating that interdiffusion occurs between these two layers; (iii) the bottom interface between the InAs(QM) and the native oxide SiO2 on top of the (Si/Mo) substrate is abrupt. In addition, the valence band offset (VBO) between the InAs(QM) and the SiO2/(Si/Mo) substrate was determined by HXPS. The value of VBO = 0.2 ± 0.04 eV is in good agreement with literature results obtained by electrical characterization, giving a clear indication of the formation of a well-defined and abrupt InAs/SiO2 heterojunction. We have demonstrated that HXPS and SW-HXPS are non-destructive, powerful methods for characterizing interfaces and for providing chemical depth profiles of nanostructures, quantum membranes, and 2D layered materials.
- Published
- 2018
- Full Text
- View/download PDF
42. Interface chemical and electronic properties of LaAlO3/SrVO3 heterostructures
- Author
-
Julien E. Rault, Bruno Berini, Yves Dumont, Arnaud Fouchet, Jean-Pascal Rueff, Niels Keller, Mickaël Allain, Groupe d'Etude de la Matière Condensée (GEMAC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Condensed Matter - Materials Science ,Materials science ,Condensed matter physics ,Photoemission spectroscopy ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Physics and Astronomy ,Heterojunction ,02 engineering and technology ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Epitaxy ,01 natural sciences ,Layer thickness ,Spectral line ,Electrical resistivity and conductivity ,0103 physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Electronic properties - Abstract
We have studied the chemical and electronic properties of LaAlO3/SrVO3 ultrathin films by combining hard x-ray photoemission spectroscopy and transport measurements. We compare single SrVO3 (SVO) ultrathin films and SrVO3 buried below a polar LaAlO3 (LAO) thin layer, both epitaxially grown on SrTiO3. While ultrathin films (4 unit cells) of SVO do show insulating behavior over the entire temperature range, the LAO/SVO interface has a resistivity minimum at 250 K. When increasing the SVO layer thickness, the minimum is observed to shift to higher temperatures, but the resistivity stays always smaller than that of comparable SVO single films. Hard x-ray photoemission spectroscopy reveals a surface or interface related V5+ component in the V 2p spectra for SVO films and LAO/SVO heterostructures, respectively, attributed to a strongly oxidized component. This chemical reconstruction is weaker in LAO/SVO heterostructures compared to single SVO films. We show that this dead layer in SVO ultrathin films has to be considered when the film thickness reaches the few unit-cells limit and propose solutions on how to prevent this detrimental effect., Comment: 15 pages, 4 figures + SI 2 pages, 1 figure
- Published
- 2018
- Full Text
- View/download PDF
43. Large area molybdenum disulphide-epitaxial graphene vertical Van der Waals heterostructures
- Author
-
A. T. Charlie Johnson, Carl H. Naylor, Haikel Sediri, Adrian Balan, Patrick Le Fèvre, Debora Pierucci, Hugo Henck, François Bertran, Abdelkarim Ouerghi, Emmanuel Lhuillier, Yannick J. Dappe, Julien E. Rault, Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), University of Pennsylvania [Philadelphia], Physico-chimie et dynamique des surfaces (INSP-E6), Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Innovation en Chimie des Surfaces et NanoSciences (LICSEN), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Synchrotron SOLEIL (SSOLEIL), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Pennsylvania, Laboratoire Innovation en Chimie des Surfaces et NanoSciences (LICSEN UMR 3685), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Angle-resolved photoemission spectroscopy ,02 engineering and technology ,Substrate (electronics) ,01 natural sciences ,Article ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,symbols.namesake ,law ,0103 physical sciences ,Monolayer ,010306 general physics ,Molybdenum disulfide ,Multidisciplinary ,business.industry ,Graphene ,Heterojunction ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,chemistry ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Direct and indirect band gaps ,van der Waals force ,0210 nano-technology ,business - Abstract
Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design.
- Published
- 2016
- Full Text
- View/download PDF
44. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO$_3$ embedded in GdTiO$_3$
- Author
-
Slavomír Nemšák, Julien E. Rault, Pouya Moetakef, S. Cho, G. Conti, Clayton A. Jackson, Susanne Stemmer, C. G. Van de Walle, Burak Himmetoglu, Charles S. Fadley, C. Conlon, Gunnar K. Pálsson, Maria C. Asensio, Anderson Janotti, Claus M. Schneider, José Avila, Lars Bjaalie, and Leon Balents
- Subjects
Condensed Matter - Materials Science ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Layer thickness ,Spectral line ,Condensed Matter - Strongly Correlated Electrons ,Ferromagnetism ,ddc:530 ,Fermi gas ,Critical thickness ,Layer (electronics) - Abstract
For certain conditions of layer thickness, the interface between GdTiO$_3$ (GTO) and SrTiO$_3$ (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO$_3$)$_{0.3}$(Sr$_2$AlTaO$_6$)$_{0.7}$ (LSAT), with the STO layer thicknesses being at what has been suggested is the critical thickness for 2DEG formation. We have studied these with Ti-resonant angle-resolved (ARPES) and angle-integrated photoemission and find that the spectral feature in the spectra associated with the 2DEG is present in the 1.5 unit cell sample, but not in the 1.0 unit cell sample. We also observe through core-level spectra additional states in Ti and Sr, with the strength of a low-binding-energy state for Sr being associated with the appearance of the 2DEG, and we suggest it to have an origin in final-state core-hole screening., 12 pages, 4 figures
- Published
- 2015
- Full Text
- View/download PDF
45. Narrow-band Anisotropic Electronic Structure of ReS2
- Author
-
Worawat Meevasana, Deepnarayan Biswas, Phil D. C. King, Alex M. Ganose, O. J. Clark, R. Yano, Julien E. Rault, Timur K. Kim, Moritz Hoesch, David O. Scanlon, J. M. Riley, L. Collins-Mcintyre, Jiagui Feng, M. T. Sajjad, L. Bawden, Takao Sasagawa, EPSRC, The Royal Society, University of St Andrews. School of Physics and Astronomy, University of St Andrews. University of St Andrews, and University of St Andrews. Condensed Matter Physics
- Subjects
Physics ,Condensed Matter - Materials Science ,Valence (chemistry) ,Condensed matter physics ,Photoemission spectroscopy ,Band gap ,TK ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,DAS ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,01 natural sciences ,TK Electrical engineering. Electronics Nuclear engineering ,Brillouin zone ,QC Physics ,Zigzag ,0103 physical sciences ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics ,0210 nano-technology ,Electronic band structure ,Anisotropy ,QC - Abstract
We have used angle-resolved photoemission spectroscopy to investigate the band structure of ${\mathrm{ReS}}_{2}$, a transition-metal dichalcogenide semiconductor with a distorted 1T crystal structure. We find a large number of narrow valence bands, which we attribute to the combined influence of structural distortion and spin-orbit coupling. We further show how this leads to a strong in-plane anisotropy of the electronic structure, with quasi-one-dimensional bands reflecting predominant hopping along zigzag Re chains. We find that this does not persist up to the top of the valence band, where a more three-dimensional character is recovered with the fundamental band gap located away from the Brillouin zone center along ${k}_{z}$. These experiments are in good agreement with our density-functional theory calculations, shedding light on the bulk electronic structure of ${\mathrm{ReS}}_{2}$, and how it can be expected to evolve when thinned to a single layer.
- Published
- 2017
46. Temperature dependence of Yb valence in the sub-surface of YbB12(001)
- Author
-
Koji Horiba, Hiroshi Kumigashira, Yoshiyuki Ohtsubo, Fumitoshi Iga, Ryu Yukawa, Julien E. Rault, Patrick Le Fèvre, François Bertran, Yusuke Takeno, Kenta Hagiwara, Shin-ichi Kimura, Masaki Kobayashi, and Amina Taleb-Ibrahimi
- Subjects
History ,Valence (chemistry) ,Materials science ,Condensed matter physics ,Annealing (metallurgy) ,Kondo insulator ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,01 natural sciences ,Spectral line ,Computer Science Applications ,Education ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics ,0210 nano-technology - Abstract
The typical Kondo insulator, YbB12, is a candidate of topological Kondo insulators. To clarify the surface electronic structure of not only bulk but also surface by photoelectron measurements, we developed a method to obtain a clean surface of YbB12(001) by annealing at 1650 K in an ultra-high vacuum. By surface-sensitive photoelectron measurements, it was known that the surface consists of only B atoms without Yb. In the sub-surface region, Yb atoms exist and the temperature dependence of the valence agrees with those of previous HAXPES results. Here we report the cleaning method to obtain well-defined YbB12(001) surfaces and the temperature-dependent Yb valence obtained from Yb 3d core-level and valence photoelectron spectra.
- Published
- 2017
- Full Text
- View/download PDF
47. Reversible switching of in-plane polarized ferroelectric domains in BaTiO3(001) with very low energy electrons
- Author
-
Tevfik Onur Menteş, Julien E. Rault, Nicholas Barrett, Andrea Locatelli, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Elettra Sincrotrone Trieste, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), J.E.R. was funded by CEA Ph.D. grants and by the Labex PALM APTCOM project. Wethank ELETTRA (Trieste) for provision of synchrotron radiation facilities., ANR-12-IS04-0001,CHEM-SWITCH,Basculement chimique de la topologie d'ordre ferroélectrique(2012), and ANR-10-LABX-0039,PALM,Physics: Atoms, Light, Matter(2010)
- Subjects
[PHYS]Physics [physics] ,Multidisciplinary ,Materials science ,Condensed matter physics ,Electron ,Polarization (waves) ,INTERFACES AND THIN FILM ,Ferroelectricity ,Article ,Low energy ,Radiation damage ,FERROELECTRICS AND MULTIFERROICS SURFACES ,Boundary value problem ,Electronics ,Ground state - Abstract
International audience; The switchable bipolar ground state is at the heart of research into ferroelectrics for future, low-energy electronics. Polarization switching by an applied field is a complex phenomenon which depends on the initial domain ordering, defect concentration, electrical boundary conditions and charge screening. Injected free charge may also to be used to reversibly switch in-plane polarized domains. We show that the interaction between the initial domain order and the bulk screening provided by very low energy electrons switches the polarization without the collateral radiation damage which occurs when employing a beam of high energy electrons. Polarization switching during charge injection adds a new dimension to the multifunctionality of ferroelectric oxides.
- Published
- 2014
- Full Text
- View/download PDF
48. Charge spill-out and work function of few-layer graphene on SiC(0 0 0 1)
- Author
-
Claire Mathieu, O. Renault, K. Kaja, A. M. Pascon, T. Poiroux, H. Rotella, P. Blaise, Leonardo R. C. Fonseca, Julien E. Rault, Nicholas Barrett, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), University of Campinas [Campinas] (UNICAMP), Laboratoire de cristallographie et sciences des matériaux (CRISMAT), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), Institut de Droit Européen des Droits de l'Homme - EA 3976 (IDEDH), Université de Montpellier (UM), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Simulation et Modélisation (LSM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de statistiques et modélisation (LSM), Centre de Recherche en Économie et STatistique (CREST), Laboratoire d'Etude des NanoStructures et Imagerie de Surface (LENSIS), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universidade Estadual de Campinas = University of Campinas (UNICAMP), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Acoustics and Ultrasonics ,Binding energy ,Ab initio simulation ,Ab initio ,FOS: Physical sciences ,Silicon carbide ,02 engineering and technology ,Electron ,Epitaxy ,Work function ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,010306 general physics ,[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,Condensed matter physics ,Graphene ,XPEEM ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Dipole ,Density functional theory ,0210 nano-technology - Abstract
We report on the charge spill-out and work function of epitaxial few-layer graphene on 6H-SiC(0001). Experiments from high-resolution, energy-filtered X-ray photoelectron emission microscopy (XPEEM) are combined with ab initio Density Functional Theory calculations using a relaxed interface model. Work function values obtained from theory and experiments are in qualitative agreement, reproducing the previously observed trend of increasing work function with each additional graphene plane. Electrons transfer at the SiC/graphene interface through a buffer layer causes an interface dipole moment which is at the origin of the graphene work function modulation. The total charge transfer is independent of the number of graphene layers, and is consistent with the constant binding energy of the SiC component of the C 1s core-level measured by XPEEM. Charge leakage into vacuum depends on the number of graphene layers explaining why the experimental, layer-dependent C 1s-graphene core-level binding energy shift does not rigidly follow that of the work function. Thus, a combination of charge transfer at the SiC/graphene interface and charge spill-out into vacuum resolves the apparent discrepancy between the experimental work function and C1s binding energy., 14 pages, 9 figures
- Published
- 2014
- Full Text
- View/download PDF
49. Polarization Sensitive Surface Band Structure of Doped BaTiO_{3}(001)
- Author
-
Julien E. Rault, Christian Schneider, Grégory Geneste, Vitaliy Feyer, C. Mathieu, Nicholas Barrett, and J. Dionot
- Subjects
Condensed Matter - Materials Science ,Materials science ,Condensed matter physics ,business.industry ,Doping ,General Physics and Astronomy ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,Polarization (waves) ,01 natural sciences ,Ferroelectricity ,Spectral line ,Reciprocal lattice ,Condensed Matter::Materials Science ,Optics ,0103 physical sciences ,ddc:550 ,010306 general physics ,0210 nano-technology ,business ,Electronic band structure ,Single crystal - Abstract
We present a spatial and wave-vector resolved study of the electronic structure of micron sized ferroelectric domains at the surface of a BaTiO3(001) single crystal. The n-type doping of the BaTiO3 is controlled by in-situ vacuum and oxygen annealing, providing experimental evidence of a surface paraelectric-ferroelectric transition below a critical doping level. Real space imaging of photoemission threshold, core level and valence band spectra show contrast due to domain polarization. Reciprocal space imaging of the electronic structure using linearly polarized light provides unambiguous evidence for the presence of both in and out-of plane polarization with two and fourfold symmetry, respectively. The results agree well with first principles calculations., Comment: 6 pages, 5 figures
- Published
- 2013
- Full Text
- View/download PDF
50. Time-resolved photoemission spectroscopy on a metal/ferroelectric heterostructure
- Author
-
Bertrand Vilquin, Julien E. Rault, Azzedine Bendounan, Thomas Maroutian, Mathieu G. Silly, Fausto Sirotti, Gang Niu, V. Pillard, Nicholas Barrett, Ph. Lecoeur, Guillaume Agnus, Service de Physique et de Chimie des Surfaces et Interfaces (SPCSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'électronique fondamentale (IEF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-10-BLAN-1012,Surf-FER,Modifications de la structure chimique et électronique de surfaces ferroélectriques sous adsorption de H2O(2010), ANR-07-BLAN-0312,MINOS,Monolithic INtegration of functional Oxides on Silicon for novel micro-system devices(2007), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)
- Subjects
[PHYS]Physics [physics] ,Condensed Matter - Materials Science ,Materials science ,Condensed matter physics ,Photoemission spectroscopy ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Heterojunction ,02 engineering and technology ,Electronic structure ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Capacitance ,Ferroelectricity ,Electronic, Optical and Magnetic Materials ,0103 physical sciences ,Electrode ,Transient response ,PACS number(s): 77.80.−e, 73.21.Ac, 73.40.−c, 77.84.−s ,010306 general physics ,0210 nano-technology ,Polarization (electrochemistry) - Abstract
In thin film ferroelectric capacitor the chemical and electronic structure of the electrode/FE interface can play a crucial role in determining the kinetics of polarization switching. We investigate the electronic structure of a Pt/BaTiO3/SrTiO3:Nb capacitor using time-resolved photoemission spectroscopy. The chemical, electronic and depth sensitivity of core level photoemission is used to probe the transient response of different parts of the upper electrode/ferroelectric interface to voltage pulse induced polarization reversal. The linear response of the electronic structure agrees quantitatively with a simple RC circuit model. The non-linear response due to the polarization switch is demonstrated by the time-resolved response of the characteristic core levels of the electrode and the ferroelectric. Adjustment of the RC circuit model allows a first estimation of the Pt/BTO interface capacitance. The experiment shows the interface capacitance is at least 100 times higher than the bulk capacitance of the BTO film, in qualitative agreement with theoretical predictions from the literature., Comment: 7 pages, 10 figures. Submitted to Phys. Rev. B
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.