35 results on '"John Groh"'
Search Results
2. The Simons Observatory: science goals andforecasts
- Author
-
Peter Ade, James Aguirre, Zeeshan Ahmed, Simone Aiola, Aamir Ali, David Alonso, Marcelo A. Alvarez, Kam Arnold, Peter Ashton, Jason Austermann, Humna Awan, Carlo Baccigalupi, Taylor Baildon, Darcy Barron, Nick Battaglia, Richard Battye, Eric Baxter, Andrew Bazarko, James A. Beall, Rachel Bean, Dominic Beck, Shawn Beckman, Benjamin Beringue, Federico Bianchini, Steven Boada, David Boettger, J. Richard Bond, Julian Borrill, Michael L. Brown, Sarah Marie Bruno, Sean Bryan, Erminia Calabrese, Victoria Calafut, Paolo Calisse, Julien Carron, Anthony Challinor, Grace Chesmore, Yuji Chinone, Jens Chluba, Hsiao-Mei Sherry Cho, Steve Choi, Gabriele Coppi, Nicholas F. Cothard, Kevin Coughlin, Devin Crichton, Kevin D. Crowley, Kevin T. Crowley, Ari Cukierman, John M. D'Ewart, Rolando Dünner, Tijmen de Haan, Mark Devlin, Simon Dicker, Joy Didier, Matt Dobbs, Bradley Dober, Cody J. Duell, Shannon Duff, Adri Duivenvoorden, Jo Dunkley, John Dusatko, Josquin Errard, Giulio Fabbian, Stephen Feeney, Simone Ferraro, Pedro Fluxà, Katherine Freese, Josef C. Frisch, Andrei Frolov, George Fuller, Brittany Fuzia, Nicholas Galitzki, Patricio A. Gallardo, Jose Tomas Galvez Ghersi, Jiansong Gao, Eric Gawiser, Martina Gerbino, Vera Gluscevic, Neil Goeckner-Wald, Joseph Golec, Sam Gordon, Megan Gralla, Daniel Green, Arpi Grigorian, John Groh, Chris Groppi, Yilun Guan, Jon E. Gudmundsson, Dongwon Han, Peter Hargrave, Masaya Hasegawa, Matthew Hasselfield, Makoto Hattori, Victor Haynes, Masashi Hazumi, Yizhou He, Erin Healy, Shawn W. Henderson, Carlos Hervias-Caimapo, Charles A. Hill, J. Colin Hill, Gene Hilton, Matt Hilton, Adam D. Hincks, Gary Hinshaw, Renée Hložek, Shirley Ho, Shuay-Pwu Patty Ho, Logan Howe, Zhiqi Huang, Johannes Hubmayr, Kevin Huffenberger, John P. Hughes, Anna Ijjas, Margaret Ikape, Kent Irwin, Andrew H. Jaffe, Bhuvnesh Jain, Oliver Jeong, Daisuke Kaneko, Ethan D. Karpel, Nobuhiko Katayama, Brian Keating, Sarah S. Kernasovskiy, Reijo Keskitalo, Theodore Kisner, Kenji Kiuchi, Jeff Klein, Kenda Knowles, Brian Koopman, Arthur Kosowsky, Nicoletta Krachmalnicoff, Stephen E. Kuenstner, Chao-Lin Kuo, Akito Kusaka, Jacob Lashner, Adrian Lee, Eunseong Lee, David Leon, Jason S.-Y. Leung, Antony Lewis, Yaqiong Li, Zack Li, Michele Limon, Eric Linder, Carlos Lopez-Caraballo, Thibaut Louis, Lindsay Lowry, Marius Lungu, Mathew Madhavacheril, Daisy Mak, Felipe Maldonado, Hamdi Mani, Ben Mates, Frederick Matsuda, Loïc Maurin, Phil Mauskopf, Andrew May, Nialh McCallum, Chris McKenney, Jeff McMahon, P. Daniel Meerburg, Joel Meyers, Amber Miller, Mark Mirmelstein, Kavilan Moodley, Moritz Munchmeyer, Charles Munson, Sigurd Naess, Federico Nati, Martin Navaroli, Laura Newburgh, Ho Nam Nguyen, Michael Niemack, Haruki Nishino, John Orlowski-Scherer, Lyman Page, Bruce Partridge, Julien Peloton, Francesca Perrotta, Lucio Piccirillo, Giampaolo Pisano, Davide Poletti, Roberto Puddu, Giuseppe Puglisi, Chris Raum, Christian L. Reichardt, Mathieu Remazeilles, Yoel Rephaeli, Dominik Riechers, Felipe Rojas, Anirban Roy, Sharon Sadeh, Yuki Sakurai, Maria Salatino, Mayuri Sathyanarayana Rao, Emmanuel Schaan, Marcel Schmittfull, Neelima Sehgal, Joseph Seibert, Uros Seljak, Blake Sherwin, Meir Shimon, Carlos Sierra, Jonathan Sievers, Precious Sikhosana, Maximiliano Silva-Feaver, Sara M. Simon, Adrian Sinclair, Praween Siritanasak, Kendrick Smith, Stephen R. Smith, David Spergel, Suzanne T. Staggs, George Stein, Jason R. Stevens, Radek Stompor, Aritoki Suzuki, Osamu Tajima, Satoru Takakura, Grant Teply, Daniel B. Thomas, Ben Thorne, Robert Thornton, Hy Trac, Calvin Tsai, Carole Tucker, Joel Ullom, Sunny Vagnozzi, Alexander van Engelen, Jeff Van Lanen, Daniel D. Van Winkle, Eve M. Vavagiakis, Clara Vergès, Michael Vissers, Kasey Wagoner, Samantha Walker, Jon Ward, Ben Westbrook, Nathan Whitehorn, Jason Williams, Joel Williams, Edward J. Wollack, Zhilei Xu, Byeonghee Yu, Cyndia Yu, Fernando Zago, Hezi Zhang, and Ningfeng Zhu
- Subjects
Astrophysics ,Astronomy - Abstract
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
- Published
- 2019
- Full Text
- View/download PDF
3. The Simons Observatory: Science Goals and Forecasts
- Author
-
Peter Ade, James Aguirre, Zeeshan Ahmed, Simone Aiola, Aamir Ali, David Alonso, Marcelo A. Alvarez, Kam Arnold, Peter Ashton, Jason Austermann, Humna Awan, Carlo Baccigalupi, Taylor Baildon, Darcy Barron, Nick Battaglia, Richard Battye, Eric Baxter, Andrew Bazarko, James A. Beall, Rachel Bean, Dominic Beck, Shawn Beckman, Benjamin Beringue, Federico Bianchini, Steven Boada, David Boettger, J. Richard Bond, Julian Borrill, Michael L. Brown, Sarah Marie Bruno, Sean Bryan, Erminia Calabrese, Victoria Calafut, Paolo Calisse, Julien Carron, Anthony Challinor, Grace Chesmore, Yuji Chinone, Jens Chluba, Hsiao-Mei Sherry Cho, Steve Choi, Gabriele Coppi, Nicholas F. Cothard, Kevin Coughlin, Devin Crichton, Kevin D. Crowley, Kevin T. Crowley, Ari Cukierman, John M. D’Ewart, Rolando D ̈unner, Tijmen de Haan, Mark Devlin, Simon Dicker, Joy Didier, Matt Dobbs, Bradley Dober, Cody J. Duell, Shannon Duff, Adri Duivenvoorden, Jo Dunkley, John Dusatko, Josquin Errard, Giulio Fabbian, Stephen Feeney, Simone Ferraro, Pedro Fluxa, Katherine Freese, Josef C. Frisch, Andrei Frolov, George Fuller, Brittany Fuzia, Nicholas Galitzki, Patricio A. Gallardo, Jose Tomas Galvez Ghersi, Jiansong Gao, Eric Gawiser, Martina Gerbino, Vera Gluscevic, Neil Goeckner-Wald, Joseph Golec, Sam Gordon, Megan Gralla, Daniel Green, Arpi Grigorian, John Groh, Chris Groppi, Yilun Guan, Jon E. Gudmundsson, Dongwon Han, Peter Hargrave, Masaya Hasegawa, Matthew Hasselfield, Makoto Hattori, Victor Haynes, Masashi Hazumi, Yizhou He, Erin Healy, Shawn W. Henderson, Carlos Hervias-Caimapo, Charles A. Hill, J. Colin Hill7, Gene Hilton, Matt Hilton, Adam D. Hincks, Gary Hinshaw, Renee Hlozek, Shirley Ho, Shuay-Pwu Patty Ho, Logan Howe, Zhiqi Huang, Johannes Hubmayr, Kevin Huffenberger, John P. Hughes, Anna Ijjas, Margaret Ikape, Kent Irwin, Andrew H. Jaffe, Bhuvnesh Jain, Oliver Jeong, Daisuke Kaneko, Ethan D. Karpel, Nobuhiko Katayama, Brian Keating, Sarah S. Kernasovskiy, Reijo Keskitalo, Theodore Kisner, Kenji Kiuchi, Jeff Klein, Kenda Knowles, Brian Koopman, Arthur Kosowsky, Nicoletta Krachmalnicoff, Stephen E. Kuenstner, Chao-Lin Kuo, Akito Kusaka, Jacob Lashner, Adrian Lee, Eunseong Lee, David Leon, Jason S.-Y. Leung, Antony Lewis, Yaqiong Li6 Zack Li, Michele Limon, Eric Linder, Carlos Lopez-Caraballo, Thibaut Louis, Lindsay Lowry, Marius Lungu, Mathew Madhavacheril, Daisy Mak, Felipe Maldonado, Hamdi Mani, Ben Mates, Frederick Matsuda, Loıc Maurin, Phil Mauskopf, Andrew May, Nialh McCallum, Chris McKenney, Jeff McMahon, P. Daniel Meerburg, Joel Meyers, Amber Miller, Mark Mirmelstein, Kavilan Moodley, Moritz Munchmeyer, Charles Munson, Sigurd Naess, Federico Nati, Martin Navaroli, Laura Newburgh, Ho Nam Nguyen, Michael Niemack, Haruki Nishino, John Orlowski-Scherer, Lyman Page, Bruce Partridge, Julien Peloton, Francesca Perrotta, Lucio Piccirillo, Giampaolo Pisano, Davide Poletti, Roberto Puddu, Giuseppe Puglisi, Chris Raum, Christian L. Reichardt, Mathieu Remazeilles, Yoel Rephaeli, Dominik Riechers, Felipe Rojas, Anirban Roy, Sharon Sadeh, Yuki Sakurai, Maria Salatino, Mayuri Sathyanarayana Rao, Emmanuel Schaan, Marcel Schmittfull, Neelima Sehgal, Joseph Seibert, Uros Seljak, Blake Sherwin, Meir Shimon, Carlos Sierra, Jonathan Sievers, Precious Sikhosana, Maximiliano Silva-Feaver, Sara M. Simon, Adrian Sinclair, Praween Siritanasak, Kendrick Smith, Stephen R. Smith, David Spergel, Suzanne T. Staggs, George Stein, Jason R. Stevens, Radek Stompor, Aritoki Suzuki, Osamu Tajima, Satoru Takakura, Grant Teply, Daniel B. Thomas, Ben Thorne, Robert Thornton, Hy Trac, Calvin Tsai, Carole Tucker, Joel Ullom, Sunny Vagnozzi, Alexander van Engelen, Jeff Van Lanen, Daniel D. Van Winkle, Eve M. Vavagiakis, Clara Verges, Michael Vissers, Kasey Wagoner, Samantha Walker, Jon Ward, Ben Westbrook, Nathan Whitehorn, Jason Williams, Joel Williams, Edward J. Wollack, Zhilei Xu, Byeonghee Yu, Cyndia Yu, Fernando Zago, Hezi Zhang, and Ningfeng Zhu
- Subjects
Astronomy - Abstract
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on CerroToco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27,39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-mtelescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping≈10% of the sky to a white noise level of 2μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level ofσ(r) = 0.003. The large aperture telescope will map ≈40% of the sky at arcminute angular resolution to an expected white noise level of 6μK-arcminin combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev–Zel’dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than20,000 extragalactic sources.
- Published
- 2019
- Full Text
- View/download PDF
4. Simons Observatory Focal-Plane Module: Detector Re-biasing With Bias-step Measurements
- Author
-
Yuhan Wang, Tanay Bhandarkar, Steve K. Choi, Kevin T. Crowley, Shannon M. Duff, Daniel Dutcher, John Groh, Kathleen Harrington, Erin Healy, Bradley Johnson, Jack Lashner, Yaqiong Li, Max Silva-Feaver, Rita Sonka, Suzanne T. Staggs, Samantha Walker, and Kaiwen Zheng
- Subjects
FOS: Physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The Simons Observatory is a ground-based cosmic microwave background survey experiment that consists of three 0.5 m small-aperture telescopes and one 6 m large-aperture telescope, sited at an elevation of 5200 m in the Atacama Desert in Chile. SO will deploy 60,000 transition-edge sensor (TES) bolometers in 49 separate focal-plane modules across a suite of four telescopes covering 30/40 GHz low frequency (LF), 90/150 GHz mid frequency (MF), and 220/280 GHz ultra-high frequency (UHF). Each MF and UHF focal-plane module packages 1720 optical detectors spreading across 12 detector bias lines that provide voltage biasing to the detectors. During observation, detectors are subject to varying atmospheric emission and hence need to be re-biased accordingly. The re-biasing process includes measuring the detector properties such as the TES resistance and responsivity in a fast manner. Based on the result, detectors within one bias line then are biased with suitable voltage. Here we describe a technique for re-biasing detectors in the modules using the result from bias-step measurement.
- Published
- 2022
5. Effect of Stray Impedance in Frequency-Division Multiplexed Readout of TES Sensors in POLARBEAR-2b
- Author
-
Darcy Barron, Masashi Hazumi, L. N. Lowry, M. A. Dobbs, Joseph Seibert, Kam Arnold, Maximiliano Silva-Feaver, Oliver Jeong, Adrian T. Lee, Charles A. Hill, Jennifer Ito, John Groh, Kevin T. Crowley, Tucker Elleflot, S. Takakura, L. Howe, Masaya Hasegawa, Praween Siritanasak, Benjamin Westbrook, A. Suzuki, D. Kaneko, Christopher Raum, Brian Keating, Akito Kusaka, S. Takatori, C. Tsai, and Nobuhiko Katayama
- Subjects
Physics ,Frequency division multiplexed ,business.industry ,Cosmic microwave background ,Bolometer ,Condensed Matter Physics ,Polarization (waves) ,01 natural sciences ,Multiplexing ,Atomic and Molecular Physics, and Optics ,010305 fluids & plasmas ,law.invention ,Frequency-division multiplexing ,Optics ,law ,0103 physical sciences ,General Materials Science ,Transition edge sensor ,010306 general physics ,business ,Electrical impedance - Abstract
POLARBEAR-2b (PB-2b) is the second of three cryogenic receivers of the Simons Array cosmic microwave background polarization experiment. PB-2b contains over 7500 transition-edge sensor (TES) bolometers cooled to 250 mK and read out using digital frequency-division multiplexing (DfMux). Stray impedance in the DfMux circuit obscures TES characterization and affects TES dynamic behavior. In order to accurately characterize TESs, it is necessary to account for stray impedance in the bias circuit. We define a stray impedance model, and we describe the technique used to measure model parameters in situ and to remove their effects on TES characterization. We use the same model to predict TES dynamic behavior and show good agreement between data and the model.
- Published
- 2020
6. On-Sky Performance of the SPT-3G Frequency-Domain Multiplexed Readout
- Author
-
J. A. Sobrin, Thomas Cecil, E. V. Denison, S. S. Meyer, Kent D. Irwin, Peter A. R. Ade, W. L. Holzapfel, K. T. Story, K. Vanderlinde, A. E. Lowitz, V. Novosad, Donna Kubik, Aled Jones, John E. Carlstrom, G. I. Noble, Lincoln Bryant, Jason W. Henning, T. de Haan, Ki Won Yoon, Volodymyr Yefremenko, Nathan Whitehorn, Zeeshan Ahmed, T. Natoli, N. L. Harrington, Gene C. Hilton, Robert Gardner, Amy N. Bender, Carole Tucker, Jason Gallicchio, E. M. Leitch, C. L. Chang, A. E. Gambrel, W. B. Everett, A. Foster, Adrian T. Lee, D. Howe, D. Dutcher, Antony A. Stark, M. Jonas, Aritoki Suzuki, J. E. Ruhl, J. Stephen, Trupti Khaire, D. Riebel, Bradford Benson, J. F. Cliche, Joshua Montgomery, H. M. Cho, Ari Cukierman, Graeme Smecher, Z. Pan, Alexandra S. Rahlin, R. Basu Thakur, Matt Dobbs, K. R. Ferguson, Faustin Carter, Andrew Nadolski, Junjia Ding, Adam Anderson, M. R. Young, N. W. Halverson, Leila R. Vale, Oliver Jeong, Chao-Lin Kuo, Keith L. Thompson, John Groh, Karen Byrum, John E. Pearson, P. Paschos, N. Huang, A. Gilbert, J. Fu, A. M. Kofman, Jessica Avva, R. Guyser, Stephen Padin, C. M. Posada, Steve Kuhlmann, Joaquin Vieira, S. Guns, Daniel Michalik, Gensheng Wang, W. Quan, Erik Shirokoff, Peter S. Barry, A. H. Harke-Hosemann, H. T. Nguyen, M. Korman, and J. T. Sayre
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Multiplexing ,Noise (electronics) ,010305 fluids & plasmas ,law.invention ,Optics ,law ,0103 physical sciences ,General Materials Science ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,business.industry ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,White noise ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,South Pole Telescope ,Frequency domain ,Transition edge sensor ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Voltage - Abstract
Frequency-domain multiplexing (fMux) is an established technique for the readout of large arrays of transition edge sensor (TES) bolometers. Each TES in a multiplexing module has a unique AC voltage bias that is selected by a resonant filter. This scheme enables the operation and readout of multiple bolometers on a single pair of wires, reducing thermal loading onto sub-Kelvin stages. The current receiver on the South Pole Telescope, SPT-3G, uses a 68x fMux system to operate its large-format camera of $\sim$16,000 TES bolometers. We present here the successful implementation and performance of the SPT-3G readout as measured on-sky. Characterization of the noise reveals a median pair-differenced 1/f knee frequency of 33 mHz, indicating that low-frequency noise in the readout will not limit SPT-3G's measurements of sky power on large angular scales. Measurements also show that the median readout white noise level in each of the SPT-3G observing bands is below the expectation for photon noise, demonstrating that SPT-3G is operating in the photon-noise-dominated regime., Comment: 9 pages, 5 figures submitted to the Journal of Low Temperature Physics: LTD18 Special Edition
- Published
- 2019
7. Performance of Al–Mn Transition-Edge Sensor Bolometers in SPT-3G
- Author
-
M. Korman, Kent D. Irwin, W. L. Holzapfel, J. E. Ruhl, H. M. Cho, Ari Cukierman, V. Novosad, Donna Kubik, C. L. Chang, A. E. Gambrel, Alexandra S. Rahlin, Matt Dobbs, K. Vanderlinde, Keith L. Thompson, D. Howe, M. R. Young, Karen Byrum, Thomas Cecil, R. Basu Thakur, Erik Shirokoff, P. Paschos, Aled Jones, Peter A. R. Ade, Zeeshan Ahmed, Amy N. Bender, Ki Won Yoon, A. H. Harke-Hosemann, K. T. Story, A. E. Lowitz, H. T. Nguyen, D. Dutcher, Antony A. Stark, J. A. Sobrin, J. Stephen, Jason Gallicchio, Lincoln Bryant, Jason W. Henning, J. T. Sayre, S. S. Meyer, Volodymyr Yefremenko, Nathan Whitehorn, John E. Pearson, Peter S. Barry, N. L. Harrington, T. Natoli, Andrew Nadolski, Jessica Avva, G. I. Noble, Carole Tucker, R. Guyser, Stephen Padin, Trupti Khaire, N. Huang, A. Foster, Joshua Montgomery, A. Gilbert, C. M. Posada, Bradford Benson, Robert Gardner, J. F. Cliche, Steve Kuhlmann, Gene C. Hilton, Joaquin Vieira, Chao-Lin Kuo, S. Guns, Graeme Smecher, W. B. Everett, N. W. Halverson, Daniel Michalik, Gensheng Wang, John Groh, J. Fu, E. V. Denison, W. Quan, A. M. Kofman, M. Jonas, Leila R. Vale, Adrian T. Lee, Aritoki Suzuki, Faustin Carter, Junjia Ding, John E. Carlstrom, T. de Haan, E. M. Leitch, D. Riebel, Oliver Jeong, Z. Pan, K. R. Ferguson, and Adam Anderson
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Multiplexing ,010305 fluids & plasmas ,law.invention ,Optics ,law ,0103 physical sciences ,General Materials Science ,Wafer ,010306 general physics ,Anisotropy ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,business.industry ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,South Pole Telescope ,Transition edge sensor ,Astrophysics - Instrumentation and Methods for Astrophysics ,business - Abstract
SPT-3G is a polarization-sensitive receiver, installed on the South Pole Telescope, that measures the anisotropy of the cosmic microwave background (CMB) from degree to arcminute scales. The receiver consists of ten 150~mm-diameter detector wafers, containing a total of 16,000 transition-edge sensor (TES) bolometers observing at 95, 150, and 220 GHz. During the 2018-2019 austral summer, one of these detector wafers was replaced by a new wafer fabricated with Al-Mn TESs instead of the Ti/Au design originally deployed for SPT-3G. We present the results of in-lab characterization and on-sky performance of this Al-Mn wafer, including electrical and thermal properties, optical efficiency measurements, and noise-equivalent temperature. In addition, we discuss and account for several calibration-related systematic errors that affect measurements made using frequency-domain multiplexing readout electronics., Comment: 9 pages, 5 figures, submitted to the Journal of Low Temperature Physics: LTD18 Special Edition
- Published
- 2019
8. Performance and characterization of the SPT-3G digital frequency multiplexed readout system using an improved noise and crosstalk model
- Author
-
A. E. Lowitz, Adam Anderson, Tucker Elleflot, Amy N. Bender, Graeme Smecher, Aritoki Suzuki, D. Dutcher, Matt Dobbs, G. I. Noble, Nathan Whitehorn, David Riebel, Joshua Montgomery, Alexandra S. Rahlin, Z. Pan, N. Huang, W. L. Holzapfel, Jessica Avva, Doug Howe, A. Foster, and John Groh
- Subjects
Crosstalk ,Previous generation ,Cardinal point ,South Pole Telescope ,Physics::Instrumentation and Detectors ,Computer science ,Bandwidth (signal processing) ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Electronic engineering ,Multiplexing ,Third generation - Abstract
The third generation South Pole Telescope camera (SPT-3G) improves over its predecessor (SPTpol) by an order of magnitude increase in detector number. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5x expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth system depart in significant ways from the characterization and models drawn from the previous generation of cameras. We present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems, and identify two previously uncharacterized contributions to readout noise. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G, and suggest improvements to the readout system for future experiments using DfMUX, such as the LiteBIRD satellite.
- Published
- 2020
9. Detector and readout characterization for POLARBEAR-2b
- Author
-
Charles A. Hill, Masashi Hazumi, Kayla Mitchell, M. Navaroli, Kam Arnold, P. Siritanasak, Oliver Jeong, Jennifer Ito, Calvin Tsai, A. T. P. Pham, Trevor Sasse, Darcy Barron, Christopher Raum, L. N. Lowry, Tucker Elleflot, Carlo Baccigalupi, Aritoki Suzuki, Akito Kusaka, Joseph Seibert, B. Bixler, Brian Keating, Yuji Chinone, L. Howe, Kevin T. Crowley, Benjamin Westbrook, Christian L. Reichardt, John Groh, Adrian T. Lee, Tylor Adkins, S. Takakura, and Grant Teply
- Subjects
Physics ,Gravitational wave ,business.industry ,Detector ,Cosmic microwave background ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Multiplexing ,law.invention ,Telescope ,Resonator ,Optics ,law ,Astrophysics::Earth and Planetary Astrophysics ,Antenna (radio) ,business ,Astrophysics::Galaxy Astrophysics - Abstract
The Simons Array is a set of three millimeter-wavelength telescopes in the Atacama Desert in northern Chile. It is designed to measure the polarization of the cosmic microwave background caused by density perturbations, gravitational lensing, and primordial gravitational waves. Polarbear-2b (PB-2b) is the receiver that will be mounted onto the Paul Simons Telescope, the second Simons Array telescope. Each pixel in the PB-2b focal plane has a broadband sinuous antenna coupled to transition-edge sensor (TES) bolometers. In all, there are more than 7,500 antenna-coupled TES bolometers which are biased and read out using a digital frequency-domain multiplexing framework. We implement a multiplexing factor of 40 with resonator frequencies ranging from 1.6 MHz to 4.6 MHz. These resonators are connected to superconducting quantum interference device arrays that provide a signal amplification stage. We present Polarbear-2b detector and readout characterization results from in-lab testing that enabled the deployment of PB-2b to Chile in March 2020.
- Published
- 2020
10. Data acquisition and management system for the CMB polarization experiment: Simons Array
- Author
-
Theodore Kisner, P. Siritanasak, Nathan Whitehorn, Kevin T. Crowley, Y. Zhou, Daisuke Kaneko, Tucker Elleflot, Akito Kusaka, Benjamin Westbrook, Alexandra S. Rahlin, S. Takakura, L. Howe, Haruaki Hirose, H. Nishino, John Groh, Joshua Montgomery, Masashi Hazumi, Masaya Hasegawa, Darcy Barron, S. Kikuchi, A. Zahn, Charles A. Hill, D. Tanabe, S. Takatori, Graeme Smecher, Amy N. Bender, and Yuji Chinone
- Subjects
Data acquisition ,business.industry ,Observatory ,Computer science ,Data management ,Cosmic microwave background ,Real-time computing ,Bandwidth (signal processing) ,Management system ,business ,Data rate ,Raw data - Abstract
The Simons Array upgrades the POLARBEAR experiment, which measures the cosmic microwave background from the Atacama Desert in Chile, with three newly developed receivers. Each receiver has 7,588 transition-edge sensor bolometers with a raw data rate of approximately 20 MB/s. This significantly increased data rate required us to develop a new data-acquisition (DAQ) and data-management system. As the network bandwidth from our observatory to our data-storage sites outside Chile is not high enough to send all the raw data, we compress the raw data on-site. The expected yearly compressed data rate is approximately 60 TB from each receiver. We have also developed a new housekeeping DAQ system. The new housekeeping DAQ system is a distributed system to handle the various newly added monitoring systems and to better understand our instruments and environments. Those data can also be fetched by another module for real-time monitoring of our instrument from all over the world with latencies on the order of minutes. We deployed the first receiver in late 2018 and started the commissioning of the DAQ system. The DAQ system has been working without significant problems and already accumulates a considerable amount of the new receiver data from the commissioning observations. In this presentation, we summarize and report the status of the new systems.
- Published
- 2020
11. Anomalous Frequency Noise from the Megahertz Channelizing Resonators in Frequency-Division Multiplexed Transition Edge Sensor Readout
- Author
-
Tijmen de Haan, Jessica Avva, Darcy Barron, L. N. Lowry, Matt Dobbs, Nathan Whitehorn, Maximiliano Silva-Feaver, W. L. Holzapfel, Kevin T. Crowley, Adrian T. Lee, Aritoki Suzuki, Kam Arnold, John Groh, and Joshua Montgomery
- Subjects
Physics ,business.industry ,Physics::Instrumentation and Detectors ,Condensed Matter - Superconductivity ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,LC circuit ,Condensed Matter Physics ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Superconductivity (cond-mat.supr-con) ,Resonator ,Optics ,Band-pass filter ,0103 physical sciences ,Demodulation ,Electrical and Electronic Engineering ,Transition edge sensor ,010306 general physics ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Frequency modulation ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Noise (radio) - Abstract
Superconducting lithographed resonators have a broad range of current and potential applications in the multiplexed readout of cryogenic detectors. Here, we focus on LC bandpass filters with resonances in the 1-5 MHz range used in the transition edge sensor (TES) bolometer readout of the Simons Array cosmic microwave background (CMB) experiment. In this readout scheme, each detector signal amplitude-modulates a sinusoidal carrier tone at the resonance frequency of the detector's accompanying LC filter. Many modulated signals are transmitted over the same wire pair, and quadrature demodulation recovers the complex detector signal. We observe a noise in the resonant frequencies of the LC filters, which presents primarily as a current-dependent noise in the quadrature component after demodulation. This noise has a rich phenomenology, bearing many similarities to that of two-level system (TLS) noise observed in similar resonators in the GHz regime. These similarities suggest a common physical origin, thereby offering a new regime in which the underlying physics might be probed. We further describe an observed non-orthogonality between this noise and the detector responsivities, and present laboratory measurements that bound the resulting sensitivity penalty expected in the Simons Array. From these results, we do not anticipate this noise to appreciably affect the overall Simons Array sensitivity, nor do we expect it to limit future implementations., 5 pages, 5 figures, accepted to IEEE Transactions on Applied Superconductivity
- Published
- 2020
12. First year status and performance of the POLARBEAR-2a cosmic microwave background instrument
- Author
-
John Groh
- Subjects
Physics ,Gravitational wave background ,Wavelength ,Operability ,Observatory ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Detector array ,Neutrino ,Polarization (waves) - Abstract
POLARBEAR-2a (PB-2a) is the first of three telescopes comprising the Simons Array, a cosmic microwave background (CMB) polarization observatory sensitive over a wide range of wavelengths and angular scales. The Simons Array will have a broad science reach, including primordial gravitational wave background searches and neutrino physics constraints. PB-2a, which began observing from northern Chile in 2018, has enabled many of the technologies necessary for the full operation of the Simons Array. Here, we describe the first year on-sky characterization and operation of PB-2a along with recent upgrades which improve upon the sensitivity, stability, and operability of the detector array.
- Published
- 2020
13. Results of gravitational lensing and primordial gravitational waves from the POLARBEAR experiment
- Author
-
Peter A. R. Ade, Davide Poletti, C. Verges, Shunsuke Adachi, Kam Arnold, Yuji Chinone, A. Suzuki, Yuto Minami, Chang Feng, J. Peloton, Nathan Whitehorn, Oliver Jeong, N. W. Halverson, Yuki Inoue, T. Hamada, Akito Kusaka, Y. Zhou, A. Zahn, A. Cukierman, M. Aguilar, Carole Tucker, D. Beck, Nicoletta Krachmalnicoff, Rolando Dünner, Brian Keating, Paul L. Richards, Stephen M. Feeney, J. C. Groh, Julian Borrill, C. Tsai, Joshua Montgomery, Darcy Barron, Theodore Kisner, R. Stompor, G. Hall, D. Boettger, Tucker Elleflot, Josquin Errard, Frederick Matsuda, L. N. Lowry, D. Leon, Takayuki Tomaru, Reijo Keskitalo, Benjamin Westbrook, M. Navaroli, D. Kaneko, K. Cheung, Osamu Tajima, A. T. P. Pham, Eric V. Linder, Giulio Fabbian, A. J. Gilbert, L. Howe, Neil Goeckner-Wald, H. El-Bouhargani, Max Silva-Feaver, Hans P. Paar, M. A. Dobbs, S. Takatori, Federico Bianchini, Colin Ross, Christian L. Reichardt, John Groh, Praween Siritanasak, Julien Carron, Tomotake Matsumura, T. Fujino, Y. Akiba, H. Nishino, G. Jaehnig, Giuseppe Puglisi, Charles A. Hill, D. Tanabe, Andrew H. Jaffe, Masashi Hazumi, Nicholas Galitzki, Blake D. Sherwin, S. Kikuchi, Carlo Baccigalupi, E. M. Leitch, S. Beckman, N. Katayama, Grant Teply, A. Ducout, Aashrita Mangu, M. LeJeune, Adrian T. Lee, Nathan Stebor, Masaya Hasegawa, S. Takakura, Y. Segawa, Scott Chapman, Kevin T. Crowley, Chinone, Y, Adachi, S, Ade, P, Aguilar, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Elbouhargani, H, Carron, J, Chapman, S, Cheung, K, Crowley, K, Cukierman, A, Dunner, R, Dobbs, M, Ducout, A, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fujino, T, Galitzki, N, Gilbert, A, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaehnig, G, Jaffe, A, Jeong, O, Lejeune, M, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, A, Leitch, E, Leon, D, Linder, E, Lowry, L, Mangu, A, Matsuda, F, Matsumura, T, Minami, Y, Montgomery, J, Navaroli, M, Nishino, H, Paar, H, Peloton, J, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Richards, P, Ross, C, Segawa, Y, Sherwin, B, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tomaru, T, Tsai, C, Tucker, C, Verges, C, Westbrook, B, Whitehorn, N, Zahn, A, Zhou, Y, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), POLARBEAR, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
History ,satellite: Planck ,Cosmic microwave background ,gravitational lensing ,cosmic background radiation: polarization ,detector: noise ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gravity waves ,power spectrum ,01 natural sciences ,Education ,Primary mirror ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,Polarization ,0103 physical sciences ,Planck ,mirror ,010303 astronomy & astrophysics ,Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Gravitational wave ,Settore FIS/05 ,POLARBEAR experiment ,Gravitational effects ,gravitational radiation: primordial ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Galaxy ,Computer Science Applications ,Gravitational lens ,B-mode ,symbols ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,galaxy - Abstract
POLARBEAR is a Cosmic Microwave Background radiation (CMB) polarization experiment that is located in the Atacama Desert in Chile. The scientific goals of the experiment are to characterize the B-mode signal from gravitational lensing, as well as to search for B-mode signals created by primordial gravitational waves (PGWs). Polarbear started observations in 2012 and has published a series of results. These include the first measurement of a nonzero B-mode angular auto-power spectrum at sub-degree scales where the dominant signal is gravitational lensing of the CMB. In addition, we have achieved the first measurement of crosscorrelation between the lensing potential, which was reconstructed from the CMB polarization data alone by Polarbear, and the cosmic shear field from galaxy shapes by the Subaru Hyper Suprime-Cam (HSC) survey. In 2014, we installed a continuously rotating half-wave plate (CRHWP) at the focus of the primary mirror to search for PGWs and demonstrated the control of low-frequency noise. We have found that the low-frequency B-mode power in the combined dataset with the Planck high-frequency maps is consistent with Galactic dust foreground, thus placing an upper limit on the tensor-to-scalar ratio of r < 0.90 at the 95% confidence level after marginalizing over the foregrounds.
- Published
- 2020
14. A measurement of the CMB E-mode angular power spectrum at subdegree scales from 670 square degrees of POLARBEAR data
- Author
-
Osamu Tajima, T. Fujino, Andrew H. Jaffe, Scott Chapman, Eric V. Linder, S. Kikuchi, N. Katayama, D. Leon, Masashi Hazumi, Oliver Jeong, D. Tanabe, Grant Teply, Nicholas Galitzki, Tucker Elleflot, S. Takakura, Christian L. Reichardt, Praween Siritanasak, Josquin Errard, Akito Kusaka, Giulio Fabbian, John Groh, Brian Keating, Federico Bianchini, Ben Westbrook, M. A. O. Aguilar Faúndez, Shunsuke Adachi, Ted Kisner, K. Cheung, Adrian T. Lee, Y. Zhou, C. Tsai, Neil Goeckner-Wald, Frederick Matsuda, Tomotake Matsumura, D. Beck, Kam Arnold, Masaya Hasegawa, S. Takatori, Darcy Barron, Carlo Baccigalupi, L. N. Lowry, Davide Poletti, Clara Vergès, Kevin D. Crowley, G. Hall, M. Navaroli, Haruki Nishino, Yuto Minami, Haruaki Hirose, A. T. P. Pham, Chang Feng, Yuji Chinone, H. El Bouhargani, Y. Segawa, M. A. Dobbs, Daisuke Kaneko, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Polarbear, Adachi, S, Aguilar Faundez, M, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Bianchini, F, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Dobbs, M, El Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Galitzki, N, Goeckner-Wald, N, Groh, J, Hall, G, Hasegawa, M, Hazumi, M, Hirose, H, Jaffe, A, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Kikuchi, S, Kisner, T, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Minami, Y, Navaroli, M, Nishino, H, Pham, A, Poletti, D, Reichardt, C, Segawa, Y, Siritanasak, P, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tsai, C, Verges, C, Westbrook, B, Zhou, Y, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
cosmological model ,010504 meteorology & atmospheric sciences ,Cosmic microwave background ,cosmic background radiation: polarization ,detector: noise ,Astrophysics ,cosmic background radiation ,01 natural sciences ,Physical Chemistry ,Atomic ,expansion: multipole ,Cosmology ,Particle and Plasma Physics ,Cosmic microwave background radiation ,Big Bang nucleosynthesis ,polarbear data ,polarization: power spectrum ,010303 astronomy & astrophysics ,helium: primordial ,Physics ,Hubble constant ,symbols ,astro-ph.CO ,power spectrum: angular dependence ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Astrophysics - Cosmology and Nongalactic Astrophysics ,satellite: Planck ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,nucleosynthesis: big bang ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,statistical analysis ,Nucleosynthesis ,0103 physical sciences ,Nuclear ,Planck ,cosmic background radiation: power spectrum ,0105 earth and related environmental sciences ,Spectral density ,Molecular ,Astronomy and Astrophysics ,Abundance of the chemical elements ,detector: sensitivity ,Space and Planetary Science ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Hubble's law - Abstract
We report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from July 2014 to December 2016 with the POLARBEAR experiment. We reach an effective polarization map noise level of $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range $500 \leq \ell, Comment: 15 pages, 5 figures, submitted to ApJ
- Published
- 2020
- Full Text
- View/download PDF
15. Impact of Electrical Contacts Design and Materials on the Stability of Ti Superconducting Transition Shape
- Author
-
Volodymyr Yefremenko, Trupti Khaire, Joshua Montgomery, A. Cukierman, Stephen S. Meyer, Peter A. R. Ade, Zeeshan Ahmed, K. T. Story, Nathan Whitehorn, Faustin Carter, W. B. Everett, Erik Shirokoff, H. Nguyen, Junjia Ding, G. I. Noble, Gene C. Hilton, Jason E. Austermann, Graeme Smecher, Q. Y. Tang, Carole Tucker, Ralu Divan, M. Korman, A. M. Kofman, Alexandra S. Rahlin, J. A. Sobrin, Adam Anderson, Andrew Nadolski, I. Shirley, N. Huang, A. Gilbert, N. L. Harrington, Amy N. Bender, Ki Won Yoon, D. Dutcher, Antony A. Stark, John E. Carlstrom, Michelle Jonas, Angelina H. Harke-Hosemann, C. S. Miller, N. W. Halverson, Oliver Jeong, Matt Dobbs, Bradford Benson, Z. Pan, A. E. Lowitz, C. L. Chang, Valentine Novosad, Adrian T. Lee, Jean Francois Cliche, Daniel Michalik, K. Vanderlinde, Gensheng Wang, Keith L. Thompson, Jason W. Henning, Kent D. Irwin, W. L. Holzapfel, Donna Kubik, Tijmen de Haan, C. M. Posada, Steve Kuhlmann, Joaquin Vieira, John E. Pearson, Aritoki Suzuki, Thomas Cecil, J. T. Sayre, Liliana Stan, Jessica Avva, Stephen Padin, E. V. Denison, T. Natoli, J. E. Ruhl, Leila R. Vale, Robitan Basu Thakur, L. J. Saunders, A. Foster, Chao-Lin Kuo, John Groh, R. N. Gannon, and M. R. Young
- Subjects
Superconductivity ,Reproducibility ,Materials science ,Condensed matter physics ,Scanning electron microscope ,Bolometer ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Electrical contacts ,law.invention ,Differential interference contrast microscopy ,law ,0103 physical sciences ,General Materials Science ,Diffusion (business) ,Transition edge sensor ,010306 general physics ,0210 nano-technology - Abstract
The South Pole Telescope SPT-3G camera utilizes Ti/Au transition edge sensors (TESs). A key requirement for these sensors is reproducibility and long-term stability of the superconducting (SC) transitions. Here, we discuss the impact of electrical contacts design and materials on the shape of the SC transitions. Using scanning electron microscope, atomic force microscope, and optical differential interference contrast microscopy, we observed the presence of unexpected defects of morphological nature on the titanium surface and their evolution in time in proximity to Nb contacts. We found direct correlation between the variations of the morphology and the SC transition shape. Experiments with different diffusion barriers between TES and Nb leads were performed to clarify the origin of this problem. We have demonstrated that the reproducibility of superconducting transitions can be significantly improved by preventing diffusion processes in the TES–leads contact areas.
- Published
- 2018
16. Design and Assembly of SPT-3G Cold Readout Hardware
- Author
-
Amy N. Bender, A. Cukierman, D. Dutcher, E. V. Denison, V. G. Yefremenko, C. M. Posada, W. B. Everett, Trupti Khaire, John E. Carlstrom, K. L. Thompson, Joaquin Vieira, Q. Y. Tang, Carole Tucker, Joshua Montgomery, A. E. Lowitz, Z. Pan, Alexandra S. Rahlin, Jason E. Austermann, K. W. Yoon, Graeme Smecher, R. Basu Thakur, Chihway Chang, Valentine Novosad, J. E. Ruhl, Faustin Carter, Leila R. Vale, Y. Hori, K. M. Rotermund, K. Vanderlinde, M. A. Dobbs, Peter A. R. Ade, S. E. Kuhlmann, Junjia Ding, K. T. Story, Oliver Jeong, J. F. Cliche, Kent D. Irwin, Gene C. Hilton, W. L. Holzapfel, M. Korman, A. A. Stark, R. N. Gannon, M. R. Young, Donna Kubik, John E. Pearson, Kaori Hattori, T. Natoli, Gensheng Wang, M. Jonas, Aritoki Suzuki, John Groh, A. J. Gilbert, Jason W. Henning, Tucker Elleflot, C. L. Kuo, A. Foster, Adam Anderson, Zeeshan Ahmed, Thomas Cecil, N. W. Halverson, T. de Haan, L. J. Saunders, J. A. Sobrin, H. Nguyen, Jessica Avva, Nathan Whitehorn, S. S. Meyer, Stephen Padin, Masaya Hasegawa, H. Nishino, A. M. Kofman, I. Shirley, Andrew Nadolski, A. H. Harke-Hosemann, G. I. Noble, Aaron Lee, Erik Shirokoff, N. Huang, J. T. Sayre, D. Barron, N. L. Harrington, and Bradford Benson
- Subjects
010302 applied physics ,Physics ,business.industry ,Detector ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Resonator ,Upgrade ,Thermal conductivity ,South Pole Telescope ,Planar ,0103 physical sciences ,Optoelectronics ,General Materials Science ,010306 general physics ,business ,Electrical impedance ,Stripline - Abstract
The third-generation upgrade to the receiver on the South Pole Telescope, SPT-3G, was installed at the South Pole during the 2016–2017 austral summer to measure the polarization of the cosmic microwave background. Increasing the number of detectors by a factor of 10 to ∼16,000 \ud ∼16,000\ud required the multiplexing factor to increase to 68 and the bandwidth of the frequency-division readout electronics to span 1.6–5.2 MHz. This increase necessitates low-thermal conductance, low-inductance cryogenic wiring. Our cold readout system consists of planar thin-film aluminum inductive–capacitive resonators, wired in series with the detectors, summed together, and connected to 4K SQUIDs by 10−μm \ud 10−μm\ud -thick niobium–titanium (NbTi) broadside-coupled striplines. Here, we present an overview of the cold readout electronics for SPT-3G, including assembly details and characterization of electrical and thermal properties of the system. We report, for the NbTi striplines, values of R≤10 −4 Ω \ud R≤10−4Ω\ud , L=21±1 nH \ud L=21±1 nH\ud , and C=1.47±.02 nF \ud C=1.47±.02 nF\ud . Additionally, the striplines’ thermal conductivity is described by kA=6.0±0.3 T 0.92±0.04 μW mm K −1 \ud kA=6.0±0.3 T0.92±0.04 μW mm K−1\ud . Finally, we provide projections for cross talk induced by parasitic impedances from the stripline and find that the median value of percentage cross talk from leakage current is 0.22 and 0.09% \ud 0.09%\ud from wiring impedance.
- Published
- 2018
17. Fabrication of Detector Arrays for the SPT-3G Receiver
- Author
-
N. W. Halverson, K. Vanderlinde, J. E. Ruhl, Leila R. Vale, C. L. Kuo, M. A. Dobbs, K. L. Thompson, Zeeshan Ahmed, Z. Pan, T. Natoli, Aaron Lee, Peter A. R. Ade, C. M. Posada, Bradford Benson, Jason W. Henning, E. V. Denison, A. Foster, A. E. Lowitz, K. T. Story, Amy N. Bender, V. G. Yefremenko, A. Cukierman, D. Dutcher, T. de Haan, Thomas Cecil, Joaquin Vieira, G. I. Noble, Jason E. Austermann, A. H. Harke-Hosemann, Kent D. Irwin, J. F. Cliche, Valentine Novosad, W. L. Holzapfel, K. W. Yoon, R. N. Gannon, M. R. Young, A. J. Gilbert, Andrew Nadolski, Adam Anderson, N. Huang, Donna Kubik, Graeme Smecher, W. B. Everett, Nathan Whitehorn, Daniel Michalik, Gensheng Wang, John Groh, N. L. Harrington, Q. Y. Tang, M. Jonas, Aritoki Suzuki, J. A. Sobrin, Trupti Khaire, Liliana Stan, S. S. Meyer, Carole Tucker, J. T. Sayre, Joshua Montgomery, Erik Shirokoff, Jessica Avva, I. Shirley, C. S. Miller, Stephen Padin, M. Korman, H. Nguyen, A. M. Kofman, Ralu Divan, L. J. Saunders, John E. Pearson, Alexandra S. Rahlin, R. Basu Thakur, Chihway Chang, A. A. Stark, John E. Carlstrom, Oliver Jeong, Faustin Carter, S. E. Kuhlmann, Junjia Ding, and Gene C. Hilton
- Subjects
010302 applied physics ,Physics ,business.industry ,Detector ,Bolometer ,Condensed Matter Physics ,01 natural sciences ,Multiplexing ,Signal ,Atomic and Molecular Physics, and Optics ,Radio spectrum ,law.invention ,Cardinal point ,Optics ,South Pole Telescope ,law ,0103 physical sciences ,General Materials Science ,Antenna (radio) ,010306 general physics ,business - Abstract
The South Pole Telescope third-generation (SPT-3G) receiver was installed during the austral summer of 2016–2017. It is designed to measure the cosmic microwave background across three frequency bands centered at 95, 150, and 220 GHz. The SPT-3G receiver has ten focal plane modules, each with 269 pixels. Each pixel features a broadband sinuous antenna coupled to a niobium microstrip transmission line. In-line filters define the desired band-passes before the signal is coupled to six bolometers with Ti/Au/Ti/Au transition edge sensors (three bands × \ud ×\ud two polarizations). In total, the SPT-3G receiver is composed of 16,000 detectors, which are read out using a 68× \ud ×\ud frequency-domain multiplexing scheme. In this paper, we present the process employed in fabricating the detector arrays.
- Published
- 2018
18. A Measurement of the Degree Scale CMB B-mode Angular Power Spectrum with POLARBEAR
- Author
-
Julien Carron, M. A. Dobbs, C. Tsai, Dominic Beck, D. Leon, Ted Kisner, Aashrita Mangu, D. Boettger, Christian L. Reichardt, A. T. P. Pham, Kam Arnold, Akito Kusaka, Nicoletta Krachmalnicoff, T. Hamada, John Groh, S. Beckman, Josquin Errard, Ben Westbrook, Nathan Stebor, Neil Goeckner-Wald, Reijo Keskitalo, Daisuke Kaneko, Greg Jaehnig, Kevin T. Crowley, S. Takatori, Masaya Hasegawa, D. Tanabe, Tucker Elleflot, Giulio Fabbian, L. Howe, A. Cukierman, T. Fujino, Y. Zhou, S. Takakura, Eric V. Linder, Julian Borrill, N. Katayama, Yuki Inoue, Davide Poletti, Praween Siritanasak, Haruki Nishino, Yuto Minami, Yuji Chinone, Y. Segawa, H. El Bouhargani, Osamu Tajima, Aritoki Suzuki, N. W. Halverson, Darcy Barron, Masashi Hazumi, L. N. Lowry, G. Hall, Frederick Matsuda, Federico Bianchini, Scott Chapman, M. Navaroli, R. Stompor, Nicholas Galitzki, Clara Vergès, Maximiliano Silva-Feaver, Oliver Jeong, M. A. O. Aguilar Faúndez, Grant Teply, Brian Keating, Shunsuke Adachi, S. Kikuchi, K. Cheung, Adrian T. Lee, Giuseppe Puglisi, Charles A. Hill, Chang Feng, C. Baccigalupi, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), POLARBEAR, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Adachi, S, Aguilar Faundez, M, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Carron, J, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Cukierman, A, Dobbs, M, Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feng, C, Fujino, T, Galitzki, N, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaehnig, G, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Mangu, A, Matsuda, F, Minami, Y, Navaroli, M, Nishino, H, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Segawa, Y, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tsai, C, Verges, C, Westbrook, B, Zhou, Y, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmic microwave background radiation ,Cosmic inflation ,Cosmology ,Observational cosmology ,cosmological model ,010504 meteorology & atmospheric sciences ,Cosmic microwave background ,Astrophysics ,01 natural sciences ,Atomic ,Physical Chemistry ,Spectral line ,thermal ,Cosmic microwave background radiationCosmic inflationCosmologyObservational cosmology ,Particle and Plasma Physics ,polarization: power spectrum ,010303 astronomy & astrophysics ,media_common ,Physics ,Settore FIS/05 ,Polarization (waves) ,symbols ,astro-ph.CO ,power spectrum: angular dependence ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Astrophysics - Cosmology and Nongalactic Astrophysics ,data analysis method ,noise ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,media_common.quotation_subject ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,frequency: high ,cosmic background radiation: B-mode ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,statistical analysis ,0103 physical sciences ,Nuclear ,Planck ,cosmic background radiation: power spectrum ,inflation ,0105 earth and related environmental sciences ,gravitational radiation: primordial ,gravitational radiation ,Spectral density ,Molecular ,Astronomy and Astrophysics ,Square degree ,detector: sensitivity ,Space and Planetary Science ,Sky ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background (CMB) using taken from July 2014 to December 2016 with the POLARBEAR experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of $\mathrm{NET}_\mathrm{array}=23\, \mu \mathrm{K} \sqrt{\mathrm{s}}$ on a 670 square degree patch of sky centered at (RA, Dec)=($+0^\mathrm{h}12^\mathrm{m}0^\mathrm{s},-59^\circ18^\prime$). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ effective polarization map noise with a knee in sensitivity of $\ell = 90$, where the inflationary gravitational wave signal is expected to peak. The measured $B$-mode power spectrum is consistent with a $\Lambda$CDM lensing and single dust component foreground model over a range of multipoles $50 \leq \ell \leq 600$. The data disfavor zero $C_\ell^{BB}$ at $2.2\sigma$ using this $\ell$ range of POLARBEAR data alone. We cross-correlate our data with Planck high frequency maps and find the low-$\ell$ $B$-mode power in the combined dataset to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio $r < 0.90$ at 95% confidence level after marginalizing over foregrounds.
- Published
- 2019
19. Deployment of Polarbear-2A
- Author
-
Chang Feng, Radek Stompor, Takayuki Tomaru, Rolando Dünner, Josquin Errard, D. Tanabe, Praween Siritanasak, N. Stebor, Julien Carron, D. Leon, Davide Poletti, K. Cheung, C. Tsai, S. Takakura, Grant Teply, Yuto Minami, Yuki Inoue, Stephen M. Feeney, Yuji Chinone, Frederick Matsuda, D. Beck, Akito Kusaka, Y. Akiba, A. Suzuki, Nicoletta Krachmalnicoff, Adrian T. Lee, M. Aguilar Faúndez, J. Peloton, Colin Ross, Osamu Tajima, D. Boettger, B. Westbrook, A. T. P. Pham, M. Navaroli, N. W. Halverson, Y. Zhou, Federico Bianchini, A. Cukierman, Aashrita Mangu, Nobuhiko Katayama, T. Hamada, Tucker Elleflot, Y. Segawa, Masaya Hasegawa, G. Hall, Julian Borrill, Peter A. R. Ade, Eric V. Linder, Giulio Fabbian, H. Nishino, G. Jaehnig, Giuseppe Puglisi, Charles A. Hill, Shunsuke Adachi, S. Takatori, L. Howe, A. J. Gilbert, H. El-Bouhargani, Christian L. Reichardt, Kam Arnold, John Groh, Masashi Hazumi, Neil Goeckner-Wald, Nicholas Galitzki, S. Beckman, Brian Keating, M. A. Dobbs, Carlo Baccigalupi, Clara Vergès, Theodore Kisner, Reijo Keskitalo, Daisuke Kaneko, T. Fujino, S. Kikuchi, Darcy Barron, L. N. Lowry, Scott Chapman, Maximiliano Silva-Feaver, Oliver Jeong, Kevin T. Crowley, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Kaneko, D, Adachi, S, Ade, P, Aguilar Faundez, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bianchini, F, Boettger, D, Borrill, J, Carron, J, Chapman, S, Cheung, K, Chinone, Y, Crowley, K, Cukierman, A, Dobbs, M, Dunner, R, El-Bouhargani, H, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fujino, T, Galitzki, N, Gilbert, A, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaehnig, G, Jeong, O, Katayama, N, Keating, B, Keskitalo, R, Kikuchi, S, Kisner, T, Krachmalnicoff, N, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Mangu, A, Matsuda, F, Minami, Y, Navaroli, M, Nishino, H, Peloton, J, Pham, A, Poletti, D, Puglisi, G, Reichardt, C, Ross, C, Segawa, Y, Silva-Feaver, M, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Teply, G, Tomaru, T, Tsai, C, Verges, C, Westbrook, B, Zhou, Y, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
[PHYS]Physics [physics] ,Settore FIS/05 ,Gravitational wave ,Cosmic microwave background ,Millimeter wave ,First light ,CMB ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,010305 fluids & plasmas ,Microwave emission ,Settore FIS/05 - Astronomia e Astrofisica ,TES bolometer ,Planet ,Software deployment ,0103 physical sciences ,Extremely high frequency ,B-mode polarization ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Remote sensing - Abstract
International audience; Polarbear-2A is the first of three receivers in the Simons array, a cosmic microwave background experiment located on the Atacama Plateau in Chile. Polarbear-2A was deployed and achieved the first light in January 2019 by mapping the microwave emission from planet observations. Commissioning work is underway to prepare the receiver for science observations.
- Published
- 2019
20. Design and Bolometer Characterization of the SPT-3G First-year Focal Plane
- Author
-
Volodymyr Yefremenko, Thomas Cecil, A. E. Lowitz, Jason W. Henning, Ki Won Yoon, Nathan Whitehorn, Valentine Novosad, W. B. Everett, A. M. Kofman, Peter A. R. Ade, K. T. Story, Jason E. Austermann, T. Natoli, M. Korman, Graeme Smecher, Kent D. Irwin, A. Cukierman, N. W. Halverson, W. L. Holzapfel, A. Foster, Donna Kubik, A. H. Harke-Hosemann, Trupti Khaire, H. T. Nguyen, Joshua Montgomery, Q. Y. Tang, Gene C. Hilton, Chao-Lin Kuo, Carole Tucker, J. T. Sayre, N. Huang, Faustin Carter, Erik Shirokoff, A. Gilbert, C. L. Chang, Junjia Ding, J. E. Ruhl, John Groh, Daniel Michalik, Zeeshan Ahmed, Adam Anderson, Gensheng Wang, M. A. Dobbs, Leila R. Vale, Alexandra S. Rahlin, Lauren J. Saunders, Z. Pan, R. Basu Thakur, Amy N. Bender, J. A. Sobrin, C. M. Posada, Steve Kuhlmann, Joaquin Vieira, S. S. Meyer, Aaron Lee, D. Dutcher, I. Shirley, E. V. Denison, Jessica Avva, Keith Vanderlinde, Stephen Padin, John E. Carlstrom, G. I. Noble, John E. Pearson, T. de Haan, R. N. Gannon, Bradford Benson, J. F. Cliche, M. R. Young, Keith L. Thompson, M. Jonas, A. Nadolski, Aritoki Suzuki, N. L. Harrington, Antony A. Stark, and Oliver Jeong
- Subjects
Physics::Instrumentation and Detectors ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Multiplexing ,law.invention ,Optics ,law ,0103 physical sciences ,General Materials Science ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010302 applied physics ,Physics ,Pixel ,business.industry ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Polarization (waves) ,Atomic and Molecular Physics, and Optics ,Cardinal point ,South Pole Telescope ,business ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the polarization of the cosmic microwave background, SPT-3G contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and dual-polarization pixels, read out using 68x frequency-domain multiplexing. Here we discuss design, assembly, and layout of the modules, as well as early performance characterization of the first-year array, including yield and detector properties., Conference proceeding for Low Temperature Detectors 2017. Accepted for publication: 27 August 2018
- Published
- 2019
21. The Simons Observatory: Astro2020 APC Whitepaper
- Author
-
Abitbol, Maximilian H., Shunsuke, Adachi, Peter, Ade, James, Aguirre, Zeeshan, Ahmed, Simone, Aiola, Aamir, Ali, David, Alonso, Alvarez, Marcelo A., Kam, Arnold, Peter, Ashton, Zachary, Atkins, Jason, Austermann, Humna, Awan, Carlo, Baccigalupi, Taylor, Baildon, Anton Baleato Lizancos, Darcy, Barron, Nick, Battaglia, Richard, Battye, Eric, Baxter, Andrew, Bazarko, Beall, James A., Rachel, Bean, Dominic, Beck, Shawn, Beckman, Benjamin, Beringue, Tanay, Bhandarkar, Sanah, Bhimani, Federico, Bianchini, Steven, Boada, David, Boettger, Boris, Bolliet, Richard Bond, J., Julian, Borrill, Brown, Michael L., Sarah Marie Bruno, Sean, Bryan, Erminia, Calabrese, Victoria, Calafut, Paolo, Calisse, Julien, Carron, Carl, Fred. M., Juan, Cayuso, Anthony, Challinor, Grace, Chesmore, Yuji, Chinone, Jens, Chluba, Hsiao-Mei Sherry Cho, Steve, Choi, Susan, Clark, Philip, Clarke, Carlo, Contaldi, Gabriele, Coppi, Cothard, Nicholas F., Kevin, Coughlin, Will, Coulton, Devin, Crichton, Crowley, Kevin D., Crowley, Kevin T., Ari, Cukierman, D'Ewart, John M., Rolando, Dünner, Tijmen de Haan, Mark, Devlin, Simon, Dicker, Bradley, Dober, Duell, Cody J., Shannon, Duff, Adri, Duivenvoorden, Dunkley, Jo, Hamza El Bouhargani, Josquin, Errard, Giulio, Fabbian, Stephen, Feeney, James, Fergusson, Simone, Ferraro, Pedro, Fluxà, Katherine, Freese, Frisch, Josef C., Andrei, Frolov, George, Fuller, Nicholas, Galitzki, Gallardo, Patricio A., Jose Tomas Galvez Ghersi, Jiansong, Gao, Eric, Gawiser, Martina, Gerbino, Vera, Gluscevic, Neil, Goeckner-Wald, Joseph, Golec, Sam, Gordon, Megan, Gralla, Daniel, Green, Arpi, Grigorian, John, Groh, Chris, Groppi, Yilun, Guan, Gudmundsson, Jon E., Mark, Halpern, Dongwon, Han, Peter, Hargrave, Kathleen, Harrington, Masaya, Hasegawa, Matthew, Hasselfield, Makoto, Hattori, Victor, Haynes, Masashi, Hazumi, Erin, Healy, Henderson, Shawn W., Brandon, Hensley, Carlos, Hervias-Caimapo, Hill, Charles A., Colin Hill, J., Gene, Hilton, Matt, Hilton, Hincks, Adam D., Gary, Hinshaw, Renée, Hložek, Shirley, Ho, Shuay-Pwu Patty Ho, Hoang, Thuong D., Jonathan, Hoh, Hotinli, Selim C., Zhiqi, Huang, Johannes, Hubmayr, Kevin, Huffenberger, Hughes, John P., Anna, Ijjas, Margaret, Ikape, Kent, Irwin, Jaffe, Andrew H., Bhuvnesh, Jain, Oliver, Jeong, Matthew, Johnson, Daisuke, Kaneko, Karpel, Ethan D., Nobuhiko, Katayama, Brian, Keating, Reijo, Keskitalo, Theodore, Kisner, Kenji, Kiuchi, Jeff, Klein, Kenda, Knowles, Anna, Kofman, Brian, Koopman, Arthur, Kosowsky, Nicoletta, Krachmalnicoff, Akito, Kusaka, Phil, Laplante, Jacob, Lashner, Adrian, Lee, Eunseong, Lee, Antony, Lewis, Yaqiong, Li, Zack, Li, Michele, Limon, Eric, Linder, Jia, Liu, Carlos, Lopez-Caraballo, Thibaut, Louis, Marius, Lungu, Mathew, Madhavacheril, Daisy, Mak, Felipe, Maldonado, Hamdi, Mani, Ben, Mates, Frederick, Matsuda, Loïc, Maurin, Phil, Mauskopf, Andrew, May, Nialh, Mccallum, Heather, Mccarrick, Chris, Mckenney, Jeff, Mcmahon, Daniel Meerburg, P., James, Mertens, Joel, Meyers, Amber, Miller, Mark, Mirmelstein, Kavilan, Moodley, Jenna, Moore, Moritz, Munchmeyer, Charles, Munson, Masaaki, Murata, Sigurd, Naess, Toshiya, Namikawa, Federico, Nati, Martin, Navaroli, Laura, Newburgh, Ho Nam Nguyen, Andrina, Nicola, Mike, Niemack, Haruki, Nishino, Yume, Nishinomiya, John, Orlowski-Scherer, Luca, Pagano, Bruce, Partridge, Francesca, Perrotta, Phumlani, Phakathi, Lucio, Piccirillo, Elena, Pierpaoli, Giampaolo, Pisano, Davide, Poletti, Roberto, Puddu, Giuseppe, Puglisi, Chris, Raum, Reichardt, Christian L., Mathieu, Remazeilles, Yoel, Rephaeli, Dominik, Riechers, Felipe, Rojas, Aditya, Rotti, Anirban, Roy, Sharon, Sadeh, Yuki, Sakurai, Maria, Salatino, Mayuri Sathyanarayana Rao, Lauren, Saunders, Emmanuel, Schaan, Marcel, Schmittfull, Neelima, Sehgal, Joseph, Seibert, Uros, Seljak, Paul, Shellard, Blake, Sherwin, Meir, Shimon, Carlos, Sierra, Jonathan, Sievers, Cristobal, Sifon, Precious, Sikhosana, Maximiliano, Silva-Feaver, Simon, Sara M., Adrian, Sinclair, Kendrick, Smith, Wuhyun, Sohn, Rita, Sonka, David, Spergel, Jacob, Spisak, Staggs, Suzanne T., George, Stein, Stevens, Jason R., Radek, Stompor, Aritoki, Suzuki, Osamu, Tajima, Satoru, Takakura, Grant, Teply, Thomas, Daniel B., Ben, Thorne, Robert, Thornton, Trac, Hy, Jesse, Treu, Calvin, Tsai, Carole, Tucker, Joel, Ullom, Vagnozzi, Sunny, Alexander van Engelen, Jeff Van Lanen, Van Winkle, Daniel D., Vavagiakis, Eve M., Clara, Vergès, Michael, Vissers, Kasey, Wagoner, Samantha, Walker, Yuhan, Wang, Jon, Ward, Ben, Westbrook, Nathan, Whitehorn, Jason, Williams, Joel, Williams, Edward, Wollack, Zhilei, Xu, Siavash, Yasini, Edward, Young, Byeonghee, Yu, Cyndia, Yu, Fernando, Zago, Mario, Zannoni, Hezi, Zhang, Kaiwen, Zheng, Ningfeng, Zhu, and Andrea, Zonca
- Published
- 2019
22. Tuning SPT-3G transition-edge-sensor electrical properties with a four-ayer Ti–Au–Ti–Au thin-film stack
- Author
-
T. de Haan, A. Cukierman, P. A. R. Ade, Daniel Michalik, W. B. Everett, Gensheng Wang, Trupti Khaire, C. L. Kuo, Joshua Montgomery, Andrew Nadolski, Zeeshan Ahmed, Amy N. Bender, V. Kutepova, C. S. Miller, Q. Y. Tang, K. T. Story, N. L. Harrington, Liliana Stan, D. Dutcher, A. J. Gilbert, Adam Anderson, John E. Pearson, Jessica Avva, Carole Tucker, Bradford Benson, Erik Shirokoff, Stephen Padin, N. W. Halverson, Nathan Whitehorn, Kent D. Irwin, C. M. Posada, W. L. Holzapfel, J. F. Cliche, Aaron Lee, Joaquin Vieira, J. A. Sobrin, Donna Kubik, H. Nguyen, Jason E. Austermann, S. S. Meyer, A. H. Harke-Hosemann, A. E. Lowitz, I. Shirley, J. T. Sayre, L. J. Saunders, K. W. Yoon, A. M. Kofman, Graeme Smecher, N. Huang, G. I. Noble, M. Jonas, Aritoki Suzuki, M. Korman, Alexandra S. Rahlin, R. Basu Thakur, Chihway Chang, K. Vanderlinde, Jason W. Henning, R. N. Gannon, M. R. Young, John E. Carlstrom, Oliver Jeong, A. A. Stark, Thomas Cecil, T. Natoli, A. Foster, V. Novosad, John Groh, J. E. Ruhl, Leila R. Vale, M. A. Dobbs, K. L. Thompson, Z. Pan, Faustin Carter, S. E. Kuhlmann, Junjia Ding, Gene C. Hilton, E. V. Denison, V. G. Yefremenko, and Ralu Divan
- Subjects
Superconductivity ,Materials science ,business.industry ,Transition temperature ,02 engineering and technology ,Substrate (electronics) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Stack (abstract data type) ,0103 physical sciences ,Proximity effect (audio) ,Optoelectronics ,General Materials Science ,Thin film ,Transition edge sensor ,010306 general physics ,0210 nano-technology ,business ,Layer (electronics) - Abstract
We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope’s third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.
- Published
- 2018
23. SPT-3G: a multichroic receiver for the South Pole Telescope
- Author
-
N. Kuklev, H. M. Cho, Faustin Carter, Junjia Ding, Gene C. Hilton, E. V. Denison, N. Huang, V. G. Yefremenko, Christian L. Reichardt, Peter S. Barry, K. L. Thompson, Alexandra S. Rahlin, Z. Pan, Gilbert Holder, A. A. Stark, N. W. Halverson, T. de Haan, R. Basu Thakur, Chihway Chang, Kent D. Irwin, N. L. Harrington, John Groh, W. L. Holzapfel, Q. Y. Tang, Jessica Avva, A. Cukierman, John E. Carlstrom, Donna Kubik, T. Natoli, A. E. Lowitz, John E. Pearson, Stephen Padin, Bradford Benson, J. E. Ruhl, Jason W. Henning, W. B. Everett, Carole Tucker, Leila R. Vale, A. Foster, Daniel Michalik, Thomas Cecil, Gensheng Wang, Jason E. Austermann, Valentine Novosad, J. A. Sobrin, K. W. Yoon, Oliver Jeong, H. Nguyen, Graeme Smecher, Lindsey Bleem, Amy N. Bender, S. S. Meyer, R. N. Gannon, Karen Byrum, L. J. Saunders, J. F. Cliche, D. Dutcher, C. M. Posada, M. R. Young, K. Vanderlinde, I. Shirley, Steve Kuhlmann, Matt Dobbs, Joaquin Vieira, Lloyd Knox, G. I. Noble, A. M. Kofman, C. L. Kuo, T. M. Crawford, M. Jonas, Aritoki Suzuki, Zeeshan Ahmed, Peter A. R. Ade, K. T. Story, Nathan Whitehorn, Trupti Khaire, Joshua Montgomery, A. J. Gilbert, Adam Anderson, J. T. Sayre, A. H. Harke-Hosemann, E. M. Leitch, M. Korman, Erik Shirokoff, Aaron Lee, and Andrew Nadolski
- Subjects
Physics ,Gravitational wave ,Cosmic microwave background ,Detector ,Polarimetry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Condensed Matter Physics ,01 natural sciences ,Multiplexing ,Atomic and Molecular Physics, and Optics ,South Pole Telescope ,Gravitational lens ,0103 physical sciences ,General Materials Science ,010306 general physics ,010303 astronomy & astrophysics ,Galaxy cluster - Abstract
A new receiver for the South Pole Telescope, SPT-3G, was deployed in early 2017 to map the cosmic microwave background at 95, 150, and 220 GHz with ∼ \ud ∼\ud 16,000 detectors, 10 times more than its predecessor SPTpol. The increase in detector count is made possible by lenslet-coupled trichroic polarization-sensitive pixels fabricated at Argonne National Laboratory, new 68× \ud ×\ud frequency-domain multiplexing readout electronics, and a higher-throughput optical design. The enhanced sensitivity of SPT-3G will enable a wide range of results including constraints on primordial B-mode polarization, measurements of gravitational lensing of the CMB, and a galaxy cluster survey. Here we present an overview of the instrument and its science objectives, highlighting its measured performance and plans for the upcoming 2018 observing season.
- Published
- 2018
24. Particle Physics with the Cosmic Microwave Background with SPT-3G
- Author
-
A. Cukierman, M. A. Dobbs, Thomas Cecil, Aaron Lee, W. L. K. Wu, P. A. R. Ade, Trupti Khaire, J. A. Sobrin, Joshua Montgomery, Jason Gallicchio, S. S. Meyer, Zeeshan Ahmed, S. Padin, Robert Gardner, Amy N. Bender, G. P. Holder, Keith L. Thompson, A. E. Gambrel, Faustin Carter, J. E. Ruhl, D. Dutcher, Junjia Ding, Kent D. Irwin, T. M. Crawford, J. Stephen, Ki Won Yoon, T. Natoli, Carole Tucker, K. T. Story, M. R. Young, K. R. Ferguson, A. E. Lowitz, Jason W. Henning, A. Foster, Aled Jones, Volodymyr Yefremenko, John E. Pearson, Adam Anderson, Graeme Smecher, Antony A. Stark, Nathan Whitehorn, Lincoln Bryant, N. W. Halverson, G. I. Noble, W. L. Holzapfel, Oliver Jeong, John E. Carlstrom, T. de Haan, P. Paschos, V. Novosad, Donna Kubik, N. Huang, Srinivasan Raghunathan, D. Riebel, Z. Pan, Sebastian Bocquet, W. B. Everett, Chao-Lin Kuo, Christian L. Reichardt, John Groh, Lloyd Knox, Daniel Michalik, Gensheng Wang, M. Jonas, A. Nadolski, Aritoki Suzuki, W. Quan, Jessica Avva, C. M. Posada, Erik Shirokoff, Steve Kuhlmann, Joaquin Vieira, S. Guns, J. T. Sayre, A. H. Harke-Hosemann, Keith Vanderlinde, H. T. Nguyen, M. Korman, Alexandra S. Rahlin, Scott Dodelson, R. Basu Thakur, C. L. Chang, D. Howe, Lindsey Bleem, K. Aylor, A. M. Kofman, Bradford Benson, and N. L. Harrington
- Subjects
Physics ,History ,Sterile neutrino ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Polarization (waves) ,7. Clean energy ,01 natural sciences ,Universe ,Computer Science Applications ,Education ,Relativistic particle ,South Pole Telescope ,0103 physical sciences ,Angular resolution ,Neutrino ,010303 astronomy & astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,media_common - Abstract
The cosmic microwave background (CMB) encodes information about the content and evolution of the universe. The presence of light, weakly interacting particles impacts the expansion history of the early universe, which alters the temperature and polarization anisotropies of the CMB. In this way, current measurements of the CMB place interesting constraints on the neutrino energy density and mass, as well as on the abundance of other possible light relativistic particle species. We present the status of an on-going 1500 sq. deg. survey with the SPT-3G receiver, a new mm-wavelength camera on the 10-m diameter South Pole Telescope (SPT). The SPT-3G camera consists of 16,000 superconducting transition edge sensors, a 10x increase over the previous generation camera, which allows it to map the CMB with an unprecedented combination of sensitivity and angular resolution. We highlight projected constraints on the abundance of sterile neutrinos and the sum of the neutrino masses for the SPT-3G survey, which could help determine the neutrino mass hierarchy., 6 pages, 2 figures, TAUP 2019
- Published
- 2020
25. Optical characterization of the SPT-3G camera
- Author
-
J. A. Sobrin, Leila R. Vale, S. S. Meyer, Matt Dobbs, Volodymyr Yefremenko, Ki Won Yoon, V. Novosad, I. Shirley, Faustin Carter, N. Huang, M. Jonas, Aritoki Suzuki, Erik Shirokoff, John E. Pearson, S. E. Kuhlmann, Junjia Ding, Daniel Michalik, Gene C. Hilton, E. V. Denison, Jason W. Henning, J. F. Cliche, Gensheng Wang, Alexandra S. Rahlin, T. Natoli, J. E. Ruhl, R. Basu Thakur, Chihway Chang, Zeeshan Ahmed, A. E. Lowitz, Kent D. Irwin, W. L. Holzapfel, T. de Haan, A. Foster, N. W. Halverson, Chao-Lin Kuo, A. H. Harke-Hosemann, H. Nguyen, K. Vanderlinde, Donna Kubik, W. B. Everett, Keith L. Thompson, Thomas Cecil, Jessica Avva, L. J. Saunders, Stephen Padin, Oliver Jeong, A. M. Kofman, John E. Carlstrom, C. M. Posada, Ari Cukierman, Joaquin Vieira, Q. Y. Tang, M. Korman, John Groh, Z. Pan, Carole Tucker, R. N. Gannon, M. R. Young, Amy N. Bender, Andrew Nadolski, Jason E. Austermann, Graeme Smecher, D. Dutcher, J. T. Sayre, G. I. Noble, N. L. Harrington, Antony A. Stark, Bradford Benson, A. J. Gilbert, Adam Anderson, Trupti Khaire, Joshua Montgomery, Peter A. R. Ade, K. T. Story, Nathan Whitehorn, and Adrian T. Lee
- Subjects
Physics ,business.industry ,Frequency band ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Polarization (waves) ,01 natural sciences ,7. Clean energy ,Atomic and Molecular Physics, and Optics ,Fourier transform spectroscopy ,law.invention ,010309 optics ,Optics ,South Pole Telescope ,law ,0103 physical sciences ,General Materials Science ,Transition edge sensor ,010306 general physics ,business - Abstract
The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ∼ \ud ∼\ud 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.
- Published
- 2018
26. Design and characterization of the SPT-3G receiver
- Author
-
A. E. Lowitz, Adrian T. Lee, T. de Haan, Carole Tucker, Keith L. Thompson, Kent D. Irwin, T. Natoli, J. E. Ruhl, W. B. Everett, Antony A. Stark, W. L. Holzapfel, K. Vanderlinde, Andrew Nadolski, V. Novosad, Matt Dobbs, A. J. Gilbert, Adam Anderson, Donna Kubik, Bradford Benson, Peter A. R. Ade, A. Foster, J. T. Sayre, K. T. Story, J. F. Cliche, Amy N. Bender, G. I. Noble, Volodymyr Yefremenko, Ari Cukierman, A. M. Kofman, D. Dutcher, M. Jonas, Ki Won Yoon, Nathan Whitehorn, Thomas Cecil, Aritoki Suzuki, Graeme Smecher, N. W. Halverson, C. L. Chang, Jason W. Henning, Zeeshan Ahmed, Erik Shirokoff, Trupti Khaire, N. Huang, Joshua Montgomery, M. R. Young, A. H. Harke-Hosemann, N. L. Harrington, H. T. Nguyen, M. Korman, J. A. Sobrin, Chao-Lin Kuo, Alexandra S. Rahlin, John Groh, R. Basu Thakur, S. S. Meyer, Z. Pan, Faustin Carter, Junjia Ding, Oliver Jeong, John E. Carlstrom, Daniel Michalik, Gensheng Wang, J. Gallichio, John E. Pearson, W. Quan, Jessica Avva, Stephen Padin, C. M. Posada, Steve Kuhlmann, Joaquin Vieira, and S. Guns
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,Computer science ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,FOS: Physical sciences ,Design elements and principles ,02 engineering and technology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,0103 physical sciences ,Electronic engineering ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Throughput (business) ,Astroparticle physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,021001 nanoscience & nanotechnology ,Characterization (materials science) ,South Pole Telescope ,0210 nano-technology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Sensitivity (electronics) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The SPT-3G receiver was commissioned in early 2017 on the 10-meter South Pole Telescope (SPT) to map anisotropies in the cosmic microwave background (CMB). New optics, detector, and readout technologies have yielded a multichroic, high-resolution, low-noise camera with impressive throughput and sensitivity, offering the potential to improve our understanding of inflationary physics, astroparticle physics, and growth of structure. We highlight several key features and design principles of the new receiver, and summarize its performance to date., Conference Presentation at SPIE Astronomical Telescopes + Instrumentation 2018, conference 10708
- Published
- 2018
27. Characterization and performance of the second-year SPT-3G focal plane
- Author
-
Thomas Cecil, John E. Carlstrom, M. Korman, J. A. Sobrin, A. J. Gilbert, N. Huang, T. de Haan, Oliver Jeong, Adam Anderson, Ki Won Yoon, S. S. Meyer, N. L. Harrington, J. T. Sayre, Keith L. Thompson, Jason W. Henning, Carole Tucker, Trupti Khaire, Joshua Montgomery, John E. Pearson, A. E. Lowitz, M. Jonas, Bradford Benson, Andrew Nadolski, Ari Cukierman, Aritoki Suzuki, Erik Shirokoff, Peter A. R. Ade, Amy N. Bender, Chao-Lin Kuo, K. T. Story, Jason Gallicchio, D. Dutcher, M. R. Young, A. H. Harke-Hosemann, T. Natoli, Z. Pan, W. B. Everett, Kent D. Irwin, W. L. Holzapfel, J. E. Ruhl, John Groh, K. Vanderlinde, Nathan Whitehorn, A. Foster, Donna Kubik, Graeme Smecher, V. Novosad, J. F. Cliche, Alexandra S. Rahlin, R. Basu Thakur, Chihway Chang, Zeeshan Ahmed, Faustin Carter, H. Nguyen, Adrian T. Lee, S. E. Kuhlmann, Junjia Ding, A. M. Kofman, C. M. Posada, Joaquin Vieira, S. Guns, Volodymyr Yefremenko, N. W. Halverson, Jessica Avva, Stephen Padin, Daniel Michalik, Gensheng Wang, W. Quan, Matt Dobbs, Antony A. Stark, and G. I. Noble
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Microstrip ,law.invention ,Telescope ,Optics ,law ,0103 physical sciences ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Pixel ,Linear polarization ,business.industry ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,South Pole Telescope ,Cardinal point ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,business ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The third-generation instrument for the 10-meter South Pole Telescope, SPT-3G, was first installed in January 2017. In addition to completely new cryostats, secondary telescope optics, and readout electronics, the number of detectors in the focal plane has increased by an order of magnitude from previous instruments to ~16,000. The SPT-3G focal plane consists of ten detector modules, each with an array of 269 trichroic, polarization-sensitive pixels on a six-inch silicon wafer. Within each pixel is a broadband, dual-polarization sinuous antenna; the signal from each orthogonal linear polarization is divided into three frequency bands centered at 95, 150, and 220 GHz by in-line lumped element filters and transmitted via superconducting microstrip to Ti/Au transition-edge sensor (TES) bolometers. Properties of the TES film, microstrip filters, and bolometer island must be tightly controlled to achieve optimal performance. For the second year of SPT-3G operation, we have replaced all ten wafers in the focal plane with new detector arrays tuned to increase mapping speed and improve overall performance. Here we discuss the TES superconducting transition temperature and normal resistance, detector saturation power, bandpasses, optical efficiency, and full array yield for the 2018 focal plane., Comment: 13 pages, 11 figures
- Published
- 2018
28. Electrical characterization and tuning of the integrated POLARBEAR-2a focal plane and readout (Conference Presentation)
- Author
-
J. Borrill, Paul L. Richards, Stephen M. Feeney, A. T. P. Pham, J. Peloton, Darcy Barron, Mario Aguilar, Josquin Errard, L. N. Lowry, D. Beck, A. Cukierman, Akito Kusaka, M. Le Jeune, Neil Goeckner-Wald, Max Silva Feaver, W. L. Holzapfel, Nicoletta Krachmalnicoff, Gabriele Coppi, H. Roberts, Peter Ashton, A. Tikhomirov, M. A. Dobbs, Osamu Tajima, D. Leon, Masashi Hazumi, P. A. R. Ade, Grant Teply, Nathan J. Miller, Colin Ross, Nicholas Galitzki, P. Siritanasak, Blake D. Sherwin, Tucker Elleflot, Y. Akiba, K. M. Rotermund, S. Beckman, A. J. Gilbert, Christian L. Reichardt, R. Dunner, Gary A. Fuller, Oliver Jeong, Eric V. Linder, A. Madurowicz, Giulio Fabbian, John Groh, Jessica Avva, Yuki Inoue, S. Takatori, G. Jaehnig, Carlo Baccigalupi, Giuseppe Puglisi, Charles A. Hill, S. Takakura, Andrew May, Scott Chapman, D. Plambeck, Kevin T. Crowley, D. Tanabe, Kam Arnold, Brian Keating, Aamir Ali, Benjamin Westbrook, M. Navroli, Adrian T. Lee, Jennifer Ito, Masaya Hasegawa, Aritoki Suzuki, Federico Bianchini, Theodore Kisner, Julien Carron, Tomotake Matsumura, Reijo Keskitalo, Daisuke Kaneko, Y. Segawa, T. Natoli, Frederick Matsuda, Yuji Chinone, N. W. Halverson, R. Stompor, T. de Haan, T. Hamada, A. Zahn, Amy N. Bender, D. Boettger, Takayuki Tomaru, R. Tat, A. Lowitz, Chang Feng, C. Tsai, Lucio Piccirillo, Leo Steinmetz, Nobuhiko Katayama, Daisy Mak, Davide Poletti, C. Verges, L. Howe, Haruki Nishino, A. Anderson, Yuto Minami, Gabriel M. Rebeiz, Nathan Whitehorn, Christopher Raum, Joshua Montgomery, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
temperature: transition ,Cosmic microwave background ,cosmic background radiation: polarization ,frequency-division multiplexing ,Astrophysics::Cosmology and Extragalactic Astrophysics ,SQUID ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,cosmic background radiation: B-mode ,Optics ,bolometer ,gravitation: lens ,law ,0103 physical sciences ,millimeter-wave ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,inflation ,010306 general physics ,Physics ,Gravitational wave ,business.industry ,superconductivity ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,gravitational radiation: primordial ,Spectral density ,cosmic microwave background polarization ,stability ,Polarization (waves) ,transition-edge sensor ,Extremely high frequency ,resonance: frequency ,power spectrum: angular dependence ,readout ,dfmux ,Transition edge sensor ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first two seasons of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. The Simons Array expands POLARBEAR to include an additional two telescopes with next-generation POLARBEAR-2 multi-chroic receivers, observing at 95, 150, 220, and 270 GHz.The POLARBEAR-2A focal plane has 7,588 transition-edge sensor bolometers, read out with frequency-division multiplexing, with 40 frequency channels within the readout bandwidth of 1.5 to 4.5 MHz. The frequency channels are defined by a low-loss lithographed aluminum spiral inductor and interdigitated capacitor in series with each bolometer, creating a resonant frequency for each channel's unique voltage bias and current readout. Characterization of the readout includes measuring resonant peak locations and heights and fitting to a circuit model both above and below the bolometer superconducting transition temperature. This information is used determine the optimal detector bias frequencies and characterize stray impedances which may affect bolometer operation and stability. The detector electrical characterization includes measurements of the transition properties by sweeping in temperature and in voltage bias, measurements of the bolometer saturation power, as well as measuring and removing any biases introduced by the readout circuit. We present results from the characterization, tuning, and operation of the fully integrated focal plane and readout for the first POLARBEAR-2 receiver, POLARBEAR-2A, during its pre-deployment integration run.
- Published
- 2018
29. POLARBEAR-2: a new CMB polarization receiver system for the Simons array (Conference Presentation)
- Author
-
Frederick Matsuda, Colin Ross, Josquin Errard, Dominic Beck, Theodore Kisner, Masashi Hazumi, Peter A. R. Ade, Reijo Keskitalo, Daisuke Kaneko, Nicholas Galitzki, Davide Poletti, N. W. Halverson, W. L. Holzapfel, Carlo Baccigalupi, Junichi Suzuki, Rolando Dünner, Gabriel M. Rebeiz, Blake D. Sherwin, H. Roberts, Scott Chapman, Haruki Nishino, Paul L. Richards, Clara Vergès, Amy N. Bender, Yuto Minami, Raymond Tat, Takahiro Okamura, Akito Kusaka, Suet Ying D. Mak, Nathan Whitehorn, Kevin T. Crowley, Stephen M. Feeney, Richard Plambeck, Giuseppe Puglisi, Chang Feng, Charles Hill, T. Hamada, Nicoletta Krachmalnicoff, D. Tanabe, Takayuki Tomaru, D. Leon, Julian Borrill, M. Navaroli, Federico Bianchini, S. Beckman, Andrew H. Jaffe, Neil Goeckner-Wald, D. Boettger, C. Tsai, A. T. P. Pham, Lucio Piccirillo, Tijmen de Haan, Maximiliano Silva-Feaver, Aamir Ali, Kaja Rotermund, Oliver Jeong, Yuji Chinone, Maude Jeune, Andrew Gilbert, Christopher Raum, A. Zahn, Radek Stompor, Osamu Tajima, Joshua Montgomery, Brian Keating, J. Peloton, George M. Fuller, Yuki Inoue, Darcy Barron, L. N. Lowry, Mario Aguilar, S. Takatori, Gabriele Coppi, Nathan J. Miller, Christian L. Reichardt, John Groh, Kam Arnold, Jennifer Ito, Greg Jaehnig, Tucker Elleflot, Eric V. Linder, Giulio Fabbian, L. Howe, Peter Ashton, Leo Steinmetz, Grant Teply, Y. Akiba, Ali Cukierman, Praween Siritanasak, Alex Madurowicz, Nobuhiko Katayama, Matt Dobbs, Andrew May, Ben Westbrook, Aritoki Suzuki, Adrian T. Lee, Julien Carron, Masaya Hasegawa, Y. Segawa, Tomotake Matsumura, S. Takakura, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
010504 meteorology & atmospheric sciences ,Cosmic microwave background ,optics: design ,cosmic background radiation: polarization ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,Multiplexing ,neutrino mass ,law.invention ,Telescope ,Optics ,bolometer ,law ,Polarization ,0103 physical sciences ,Cosmic Microwave Background ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010303 astronomy & astrophysics ,activity report ,detector: design ,0105 earth and related environmental sciences ,Physics ,business.industry ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Inflation ,Cardinal point ,TES bolometer ,B-mode ,cryogenics ,electronics: readout ,Neutrino ,interference: quantum ,business ,performance - Abstract
International audience; POLARBEAR-2 is a new receiver system, which will be deployed on the Simons Array telescope platform, for the measurement of Cosmic Microwave Background (CMB) polarization. The science goals with POLARBEAR-2 are to characterize the B-mode signal both at degree and sub-degree angular-scales. The degree-scale polarization data can be used for quantitative studies on inflation, such as the reconstruction of the energy scale of inflation. The sub-degree polarization data is an excellent tracer of large-scale structure in the universe, and will lead to precise constraints on the sum of the neutrino masses. In order to achieve these goals, POLARBEAR-2 employs 7588 polarization-sensitive antenna-coupled transition-edge sensor (TES) bolometers on the focal plane cooled to 0.27K with a three-stage Helium sorption refrigerator, which is ~6 times larger array over the current receiver system. The large TES bolometer array is read-out by an upgraded digital frequency-domain multiplexing system capable of multiplexing 40 bolometers through a single superconducting quantum interference device (SQUID). The first POLARBEAR-2 receiver, POLARBEAR-2A is constructed and the end-to-end testing to evaluate the integrated performance of detector, readout, and optics system is being conducted in the laboratory with various types of test equipments. The POLARBEAR-2A is scheduled to be deployed in 2018 at the Atacama desert in Chile. To further increase measurement sensitivity, two more POLARBEAR-2 type receivers will be deployed soon after the deployment (Simons Array project). The Simons Array will cover four frequency bands at 95GHz, 150GHz, 220GH and 270GHz for better control of the foreground signal. The projected constraints on a tensor-to-scalar ratio (amplitude of inflationary B-mode signal) is σ(r=0.1) = $6.0 \times 10^{-3}$ after foreground removal ($4.0 \times 10^{-3}$ (stat.)), and the sensitivity to the sum of the neutrino masses when combined with DESI spectroscopic galaxy survey data is 40 meV at 1-sigma after foreground removal (19 meV(stat.)). We will present an overview of the design, assembly and status of the laboratory testing of the POLARBEAR-2A receiver system as well as the Simons Array project overview.
- Published
- 2018
30. Design and characterization of the POLARBEAR-2b and POLARBEAR-2c cosmic microwave background cryogenic receivers
- Author
-
Gabriele Coppi, Adrian T. Lee, Xiaoyu Guo, Nathan Stebor, Andrew May, Grant Teply, Brian Keating, L. Howe, Kam Arnold, C. Tsai, Lucio Piccirillo, John Groh, L. N. Lowry, Howe, L, Tsai, C, Lowry, L, Arnold, K, Coppi, G, Groh, J, Guo, X, Keating, B, Lee, A, May, A, Piccirillo, L, Stebor, N, and Teply, G
- Subjects
Cryostat ,Physics::Instrumentation and Detectors ,Cryogenic ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Lenslet ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Receiver ,Optics ,law ,Polarization ,0103 physical sciences ,Cosmic Microwave Background ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Lyot stop ,business.industry ,Gravitational wave ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Thermal Conductivity ,Cosmology ,B-mode ,Millikelvin Refrigeration ,Transition edge sensor ,business ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The POLARBEAR-2/Simons Array Cosmic Microwave Background (CMB) polarization experiment is an upgrade and expansion of the existing POLARBEAR-1 (PB-1) experiment, located in the Atacama desert in Chile. Along with the CMB temperature and $E$-mode polarization anisotropies, PB-1 and the Simons Array study the CMB $B$-mode polarization anisotropies produced at large angular scales by inflationary gravitational waves, and at small angular scales by gravitational lensing. These measurements provide constraints on various cosmological and particle physics parameters, such as the tensor-to-scalar ratio $r$, and the sum of the neutrino masses. The Simons Array consists of three 3.5 m diameter telescopes with upgraded POLARBEAR-2 (PB-2) cryogenic receivers, named PB-2a, -2b, and -2c. PB-2a and -2b will observe the CMB over multiple bands centered at 95 GHz and 150 GHz, while PB-2c will observe at 220 GHz and 270 GHz, which will enable enhanced foreground separation and de-lensing. Each Simons Array receiver consists of two cryostats which share the same vacuum space: an optics tube containing the cold reimaging lenses and Lyot stop, infrared-blocking filters, and cryogenic half-wave plate; and a backend which contains the focal plane detector array, cold readout components, and millikelvin refrigerator. Each PB-2 focal plane array is comprised of 7,588 dual-polarization, multi-chroic, lenslet- and antenna-coupled, Transition Edge Sensor (TES) bolometers which are cooled to 250 mK and read out using Superconducting Quantum Interference Devices (SQUIDs) through a digital frequency division multiplexing scheme with a multiplexing factor of 40. In this work we describe progress towards commissioning the PB-2b and -2c receivers including cryogenic design, characterization, and performance of both the PB-2b and -2c backend cryostats., Comment: 20 pages
- Published
- 2018
- Full Text
- View/download PDF
31. Broadband anti-reflective coatings for cosmic microwave background experiments
- Author
-
J. Gallichio, Amy N. Bender, John E. Pearson, D. Dutcher, C. M. Posada, Volodymyr Yefremenko, Joaquin Vieira, S. Guns, V. Novosad, Ki Won Yoon, W. B. Everett, Daniel Michalik, Antony A. Stark, Gensheng Wang, Carole Tucker, G. I. Noble, W. Quan, K. Vanderlinde, Aled Jones, A. E. Lowitz, Kent D. Irwin, Z. Pan, W. L. Holzapfel, John E. Carlstrom, T. de Haan, Peter A. R. Ade, Donna Kubik, Matt Dobbs, Jason W. Henning, T. Natoli, Chao-Lin Kuo, A. J. Gilbert, K. T. Story, Jessica Avva, Adam Anderson, R. Guyser, Stephen Padin, Faustin Carter, John Groh, Alexandra S. Rahlin, S. E. Kuhlmann, Junjia Ding, N. W. Halverson, R. Basu Thakur, Chihway Chang, Keith L. Thompson, Oliver Jeong, Graeme Smecher, A. Foster, Thomas Cecil, M. Jonas, Aritoki Suzuki, Andrew Nadolski, J. F. Cliche, N. Huang, Nathan Whitehorn, Ari Cukierman, M. R. Young, J. A. Sobrin, S. S. Meyer, Trupti Khaire, Joshua Montgomery, J. E. Ruhl, J. T. Sayre, Zeeshan Ahmed, Adrian T. Lee, Erik Shirokoff, H. Nguyen, J. Fu, A. M. Kofman, A. H. Harke-Hosemann, N. L. Harrington, M. Korman, and Bradford Benson
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Cosmic microwave background ,FOS: Physical sciences ,02 engineering and technology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radiation ,engineering.material ,01 natural sciences ,law.invention ,Optics ,Coating ,law ,0103 physical sciences ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,business.industry ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,021001 nanoscience & nanotechnology ,Cardinal point ,South Pole Telescope ,Anti-reflective coating ,Extremely high frequency ,engineering ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,business - Abstract
The desire for higher sensitivity has driven ground-based cosmic microwave background (CMB) experiments to employ ever larger focal planes, which in turn require larger reimaging optics. Practical limits to the maximum size of these optics motivates the development of quasi-optically-coupled (lenslet-coupled), multi-chroic detectors. These detectors can be sensitive across a broader bandwidth compared to waveguide-coupled detectors. However, the increase in bandwidth comes at a cost: the lenses (up to $\sim$700 mm diameter) and lenslets ($\sim$5 mm diameter, hemispherical lenses on the focal plane) used in these systems are made from high-refractive-index materials (such as silicon or amorphous aluminum oxide) that reflect nearly a third of the incident radiation. In order to maximize the faint CMB signal that reaches the detectors, the lenses and lenslets must be coated with an anti-reflective (AR) material. The AR coating must maximize radiation transmission in scientifically interesting bands and be cryogenically stable. Such a coating was developed for the third generation camera, SPT-3G, of the South Pole Telescope (SPT) experiment, but the materials and techniques used in the development are general to AR coatings for mm-wave optics. The three-layer polytetrafluoroethylene-based AR coating is broadband, inexpensive, and can be manufactured with simple tools. The coating is field tested; AR coated focal plane elements were deployed in the 2016-2017 austral summer and AR coated reimaging optics were deployed in 2017-2018., Comment: 13 pages, 5 figures
- Published
- 2018
- Full Text
- View/download PDF
32. The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status
- Author
-
Adrian T. Lee, Neil Goeckner-Wald, D. Beck, D. Leon, A. Cukierman, M. Navaroli, Brian Keating, Y. Segawa, Tucker Elleflot, Masaya Hasegawa, Maximiliano Silva-Feaver, Peter A. R. Ade, Y. Akiba, Matt Dobbs, Julian Borrill, Paul L. Richards, Stephen M. Feeney, Rolando Dünner, K. M. Rotermund, C. Tsai, Oliver Jeong, Osamu Tajima, A. T. P. Pham, Eric V. Linder, Gabriel M. Rebeiz, Josquin Errard, S. Takakura, D. Plambeck, Lucio Piccirillo, Nathan Whitehorn, Yuji Chinone, S. Beckman, Giulio Fabbian, L. Howe, M. Le Jeune, Federico Bianchini, Christopher Raum, Daisy Mak, Grant Teply, W. L. Holzapfel, Andrew May, Joshua Montgomery, Carlo Baccigalupi, H. Roberts, S. Takatori, Christian L. Reichardt, Reijo Keskitalo, A. J. Gilbert, Gary A. Fuller, R. Tat, Akito Kusaka, Nobuhiko Katayama, D. Boettger, A. Tikhomirov, John Groh, Benjamin Westbrook, Giuseppe Puglisi, Charles A. Hill, Scott Chapman, Nicoletta Krachmalnicoff, Colin Ross, Amy N. Bender, A. Madurowicz, Darcy Barron, J. Peloton, N. W. Halverson, L. N. Lowry, Aritoki Suzuki, Chang Feng, Andrew H. Jaffe, Takayuki Tomaru, Davide Poletti, A. Zahn, Radek Stompor, Mario Ferrada Aguilar, Theodore Kisner, T. de Haan, T. Hamada, Gabriele Coppi, Yuto Minami, Yuki Inoue, Nathan J. Miller, D. Tanabe, H. Nishino, G. Jaehnig, Masashi Hazumi, Nicholas Galitzki, Blake D. Sherwin, Kevin D. Crowley, Kam Arnold, Frederick Matsuda, D. Kaneko, Praween Siritanasak, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Westbrook, B, Ade, P, Aguilar, M, Akiba, Y, Arnold, K, Baccigalupi, C, Barron, D, Beck, D, Beckman, S, Bender, A, Bianchini, F, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Coppi, G, Crowley, K, Cukierman, A, de Haan, T, Dunner, R, Dobbs, M, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fuller, G, Galitzki, N, Gilbert, A, Goeckner-Wald, N, Groh, J, Halverson, N, Hamada, T, Hasegawa, M, Hazumi, M, Hill, C, Holzapfel, W, Howe, L, Inoue, Y, Jaehnig, G, Jaffe, A, Jeong, O, Kaneko, D, Katayama, N, Keating, B, Keskitalo, R, Kisner, T, Krachmalnicoff, N, Kusaka, A, Le Jeune, M, Lee, A, Leon, D, Linder, E, Lowry, L, Madurowicz, A, Mak, D, Matsuda, F, May, A, Miller, N, Minami, Y, Montgomery, J, Navaroli, M, Nishino, H, Peloton, J, Pham, A, Piccirillo, L, Plambeck, D, Poletti, D, Puglisi, G, Raum, C, Rebeiz, G, Reichardt, C, Richards, P, Roberts, H, Ross, C, Rotermund, K, Segawa, Y, Sherwin, B, Silva-Feaver, M, Siritanasak, P, Stompor, R, Suzuki, A, Tajima, O, Takakura, S, Takatori, S, Tanabe, D, Tat, R, Teply, G, Tikhomirov, A, Tomaru, T, Tsai, C, Whitehorn, N, Zahn, A, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
- Subjects
Cosmic microwave background ,cosmic background radiation: polarization ,CMB ,Dichroic glass ,01 natural sciences ,law.invention ,law ,Atomic and Molecular Physics ,Polarization ,General Materials Science ,silicon: nitrogen ,Instrumentation ,Mathematical Physics ,010302 applied physics ,Physics ,Settore FIS/05 ,superconductivity ,Detector ,Detectors ,Polarization (waves) ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Cardinal point ,Materials Science (all) ,silicon: oxygen ,Astrophysics - Instrumentation and Methods for Astrophysics ,Transition edge sensor ,performance ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Fabrication ,Sinuous antenna ,Inflation ,General Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Classical Physics ,FOS: Physical sciences ,Telescope ,Optics ,Settore FIS/05 - Astronomia e Astrofisica ,bolometer ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,detector: design ,activity report ,business.industry ,Bolometer ,and Optics ,business - Abstract
著者人数: 93名(所属. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS): 羽澄, 昌史), Accepted: 2018-08-27, 資料番号: SA1180208000
- Published
- 2017
33. Making maps of cosmic microwave background polarization for B-mode studies: the POLARBEAR example
- Author
-
Eric V. Linder, Josquin Errard, Davide Poletti, Tucker Elleflot, Osamu Tajima, Giulio Fabbian, Theodore Kisner, Julian Borrill, Maude Le Jeune, Grantland Hall, Aritoki Suzuki, Akito Kusaka, L. Howe, Praween Siritanasak, Yuji Chinone, Ari Cukierman, Brian Keating, D. Leon, M. Navaroli, Kam Arnold, Reijo Keskitalo, Giuseppe Puglisi, Bryan Steinbach, Stephen M. Feeney, Frederick Matsuda, Colin Ross, J. Peloton, Nathan Whitehorn, Charles Hill, Andrew H. Jaffe, Masashi Hazumi, Christian L. Reichardt, John Groh, Neil Goeckner-Wald, Yuki Inoue, Scott Chapman, Darcy Barron, L. N. Lowry, Nathan Stebor, Masaya Hasegawa, Oliver Jeong, S. Beckman, Hans P. Paar, Carlo Baccigalupi, Nobuhiko Katayama, Grant Teply, Radek Stompor, A. Ducout, Adrian T. Lee, Science and Technology Facilities Council, Science and Technology Facilities Council (STFC), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Institut Lagrange de Paris, Sorbonne Universités, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université (SU), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Poletti, D, Fabbian, G, Le Jeune, M, Peloton, J, Arnold, K, Baccigalupi, C, Barron, D, Beckman, S, Borrill, J, Chapman, S, Chinone, Y, Cukierman, A, Ducout, A, Elleflot, T, Errard, J, Feeney, S, Goeckner-Wald, N, Groh, J, Hall, G, Hasegawa, M, Hazumi, M, Hill, C, Howe, L, Inoue, Y, Jaffe, A, Jeong, O, Katayama, N, Keating, B, Keskitalo, R, Kisner, T, Kusaka, A, Lee, A, Leon, D, Linder, E, Lowry, L, Matsuda, F, Navaroli, M, Paar, H, Puglisi, G, Reichardt, C, Ross, C, Siritanasak, P, Stebor, N, Steinbach, B, Stompor, R, Suzuki, A, Tajima, O, Teply, G, and Whitehorn, N
- Subjects
Computer science ,POWER SPECTRUM ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Cosmic microwave background ,cosmic background radiation: polarization ,cosmic background radiation ,STATISTICAL-ANALYSIS ,01 natural sciences ,Spectral line ,estimator ,010303 astronomy & astrophysics ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,media_common ,Settore FIS/05 ,Estimator ,Polarization (waves) ,observations [cosmology] ,3. Good health ,PLANCK ,B-mode ,DATA SETS ,Cosmology: Observation ,Physical Sciences ,astro-ph.CO ,Astrophysics - Instrumentation and Methods for Astrophysics ,Algorithm ,cosmology: observations ,performance ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics ,noise ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Infrasound ,FOS: Physical sciences ,Astronomy & Astrophysics ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,DESTRIPING TECHNIQUE ,structure ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,FIELD ,numerical calculations ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Science & Technology ,010308 nuclear & particles physics ,MAKING ALGORITHM ,Astronomy and Astrophysics ,0201 Astronomical And Space Sciences ,frequency: low ,Space and Planetary Science ,Sky ,correlation ,atmosphere ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,astro-ph.IM - Abstract
Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. Filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we explicitly construct a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigate the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then study the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may have on the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focus on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR., Comment: 26 pages
- Published
- 2016
34. Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver
- Author
-
J. T. Sayre, Zeeshan Ahmed, Matt Dobbs, C. L. Chang, W. B. Everett, Trupti Khaire, Joshua Montgomery, V. Novosad, T. M. Crawford, H. Nguyen, Karen Byrum, Jason W. Henning, Peter A. R. Ade, K. T. Story, H. M. Cho, A. J. Gilbert, Alexandra S. Rahlin, J. E. Ruhl, G. Smecher, T. de Haan, Adam Anderson, N. W. Halverson, R. Basu Thakur, Nathan Whitehorn, Kent D. Irwin, J. A. Sobrin, Oliver Jeong, W. L. Holzapfel, David A. Czaplewski, S. S. Meyer, John E. Carlstrom, N. Huang, Erik Shirokoff, Keith L. Thompson, Z. Pan, Volodymyr Yefremenko, Donna Kubik, I. Shirley, Ki Won Yoon, John E. Pearson, Chao-Lin Kuo, Christian L. Reichardt, Ari Cukierman, Faustin Carter, K. Vanderlinde, Kaori Hattori, Amy N. Bender, Andrew Nadolski, Junjia Ding, T. Natoli, M. Korman, Kam Arnold, Gene C. Hilton, John Groh, Antony A. Stark, Sergi Lendinez, J. A. Shariff, D. Dutcher, B. R. Saliwanchik, Lindsey Bleem, N. L. Harrington, Ralu Divan, A. H. Harke-Hosemann, Adrian T. Lee, Bradford Benson, C. S. Miller, E. M. Leitch, C. M. Posada, Joaquin Vieira, J. F. Cliche, Liliana Stan, Jessica Avva, R. Guyser, Stephen Padin, Gensheng Wang, Aritoki Suzuki, Q. Y. Tang, Carole Tucker, and Jason E. Austermann
- Subjects
Physics ,business.industry ,Cosmic microwave background ,Bolometer ,Bandwidth (signal processing) ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Multiplexing ,law.invention ,Cardinal point ,Optics ,South Pole Telescope ,Interference (communication) ,law ,0103 physical sciences ,010306 general physics ,business ,010303 astronomy & astrophysics - Abstract
The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of ~16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.
- Published
- 2016
35. Correction to: Comparison of NIST SA13a and SA4b SQUID Array Amplifiers
- Author
-
E. V. Denison, Leila R. Vale, Maximiliano Silva-Feaver, Darcy Barron, Gene C. Hilton, John Groh, Matt Dobbs, Kent D. Irwin, Adrian T. Lee, Kam Arnold, and Johannes Hubmayr
- Subjects
Physics ,Squid ,biology ,business.industry ,Amplifier ,biology.animal ,Electrical engineering ,NIST ,General Materials Science ,Mistake ,Condensed Matter Physics ,business ,Atomic and Molecular Physics, and Optics - Abstract
The original version of this article unfortunately contained a mistake in the authors’ affiliation. The affiliations of coauthors were not submitted and published.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.