69 results on '"Forgan, RS"'
Search Results
2. Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization
- Author
-
Orellana, C, Marshall, RJ, Baxter, EF, Lázaro, IA, Tao, A, Cheetham, AK, Forgan, RS, and Fairen-Jimenez, D
- Subjects
3403 Macromolecular and Materials Chemistry ,34 Chemical Sciences ,3. Good health ,40 Engineering - Abstract
We have used a family of Zr-based metal-organic frameworks (MOFs) with different functionalized (bromo, nitro and amino) and extended linkers for drug delivery. We loaded the materials with the fluorescent model molecule calcein and the anticancer drug α-cyano-4-hydroxycinnamic acid (α-CHC), and consequently performed a mechanical amorphization process to attempt to control the delivery of guest molecules. Our analysis revealed that the loading values of both molecules were higher for the MOFs containing unfunctionalized linkers. Confocal microscopy showed that all the materials were able to penetrate into cells, and the therapeutic effect of α-CHC on HeLa cells was enhanced when loaded (20 wt%) into the MOF with the longest linker. On one hand, calcein release required up to 3 days from the crystalline form for all the materials. On the other hand, the amorphous counterparts containing the bromo and nitro functional groups released only a fraction of the total loaded amount, and in the case of the amino-MOF a slow and progressive release was successfully achieved for 15 days. In the case of the materials loaded with α-CHC, no difference was observed between the crystalline and amorphous form of the materials. These results highlight the necessity of a balance between the pore size of the materials and the size of the guest molecules to accomplish a successful and efficient sustained release using this mechanical ball-milling process. Additionally, the endocytic pathway used by cells to internalize these MOFs may lead to diverse final cellular locations and consequently, different therapeutic effects. Understanding these cellular mechanisms will drive the design of more effective MOFs for drug delivery applications.
3. Photoclick surface modification of MOF-808 for galactose-mediated targeted chemotherapy.
- Author
-
Wang Y, Foulkes RL, Panagiotou N, Markopoulou P, Bistrović Popov A, Eskandari A, Fruk L, and Forgan RS
- Subjects
- Humans, Photochemical Processes, Cell Survival drug effects, Cycloaddition Reaction, Zirconium chemistry, Drug Carriers chemistry, Particle Size, Drug Screening Assays, Antitumor, Hep G2 Cells, Tetrazoles chemistry, Tetrazoles pharmacology, Asialoglycoprotein Receptor metabolism, Asialoglycoprotein Receptor chemistry, Molecular Structure, Click Chemistry, Metal-Organic Frameworks chemistry, Metal-Organic Frameworks pharmacology, Galactose chemistry, Surface Properties, Antineoplastic Agents chemistry, Antineoplastic Agents pharmacology
- Abstract
Controllable surface modification of nanoparticulate drug delivery vectors is key to enhancing specific desirable properties such as colloidal stability, targeting, and stimuli-responsive cargo release. Metal-organic frameworks (MOFs) have been proposed as potential delivery devices, with surface modification achieved by various bioconjugate "click" reactions, including copper-catalysed and strain-promoted azide-alkyne cycloaddition. Herein, we show that photo-induced nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) can be used to surface-modify tetrazole-appended Zr MOFs with maleimides, and vice versa, with the extent of this traceless surface functionalisation controlled by the length of photoirradiation. This "photoclick" surface modification protocol is exemplified by the decorating of carboplatin-loaded MOF-808 with galactose units to target asialoglycoprotein receptors of specific cancer cell types. Targeting towards HepG2 cells, which overexpress these receptors, is indicated by enhanced endocytosis and cytotoxicity in both two- and three-dimensional cell cultures compared to other cell lines. The study shows both the power of the NITEC protocol for functionalisation of MOFs, and also the benefits of carbohydrate targeting in drug delivery vectors, with scope for significant additional work diversifying the surface targeting units available for nanoparticle functionalisation under these mild, biocompatible "photoclick" conditions., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Ross Forgan reports financial support was provided by Engineering and Physical Sciences Research Council. Yang Wang reports financial support was provided by China Scholarship Council. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
4. Functional framework materials for biomedical applications.
- Author
-
Forgan RS, Gref R, and Liu J
- Subjects
- Biocompatible Materials, Polymers
- Published
- 2024
- Full Text
- View/download PDF
5. Modulated Self-Assembly of Catalytically Active Metal-Organic Nanosheets Containing Zr 6 Clusters and Dicarboxylate Ligands.
- Author
-
Prasad RRR, Boyadjieva SS, Zhou G, Tan J, Firth FCN, Ling S, Huang Z, Cliffe MJ, Foster JA, and Forgan RS
- Abstract
Two-dimensional metal-organic nanosheets (MONs) have emerged as attractive alternatives to their three-dimensional metal-organic framework (MOF) counterparts for heterogeneous catalysis due to their greater external surface areas and higher accessibility of catalytically active sites. Zr MONs are particularly prized because of their chemical stability and high Lewis and Brønsted acidities of the Zr clusters. Herein, we show that careful control over modulated self-assembly and exfoliation conditions allows the isolation of the first example of a two-dimensional nanosheet wherein Zr
6 clusters are linked by dicarboxylate ligands. The hxl topology MOF, termed GUF-14 (GUF = Glasgow University Framework), can be exfoliated into monolayer thickness hns topology MONs, and acid-induced removal of capping modulator units yields MONs with enhanced catalytic activity toward the formation of imines and the hydrolysis of an organophosphate nerve agent mimic. The discovery of GUF-14 serves as a valuable example of the undiscovered MOF/MON structural diversity extant in established metal-ligand systems that can be accessed by harnessing the power of modulated self-assembly protocols.- Published
- 2024
- Full Text
- View/download PDF
6. Modulated self-assembly of three flexible Cr(III) PCPs for SO 2 adsorption and detection.
- Author
-
López-Cervantes VB, Bara D, Yañez-Aulestia A, Martínez-Ahumada E, López-Olvera A, Amador-Sánchez YA, Solis-Ibarra D, Sánchez-González E, Ibarra IA, and Forgan RS
- Abstract
Modulated self-assembly protocols are used to develop facile, HF-free syntheses of the archetypal flexible PCP, MIL-53(Cr), and novel isoreticular analogues MIL-53(Cr)-Br and MIL-53(Cr)-NO
2 . All three PCPs show good SO2 uptake (298 K, 1 bar) and high chemical stabilities against dry and wet SO2 . Solid-state photoluminescence spectroscopy indicates all three PCPs exhibit turn-off sensing of SO2 , in particular MIL-53(Cr)-Br, which shows a 2.7-fold decrease in emission on exposure to SO2 at room temperature, indicating potential sensing applications.- Published
- 2023
- Full Text
- View/download PDF
7. Pressure-induced postsynthetic cluster anion substitution in a MIL-53 topology scandium metal-organic framework.
- Author
-
Thom AJR, Turner GF, Davis ZH, Ward MR, Pakamorė I, Hobday CL, Allan DR, Warren MR, Leung WLW, Oswald IDH, Morris RE, Moggach SA, Ashbrook SE, and Forgan RS
- Abstract
Postsynthetic modification of metal-organic frameworks (MOFs) has proven to be a hugely powerful tool to tune physical properties and introduce functionality, by exploiting reactive sites on both the MOF linkers and their inorganic secondary building units (SBUs), and so has facilitated a wide range of applications. Studies into the reactivity of MOF SBUs have focussed solely on removal of neutral coordinating solvents, or direct exchange of linkers such as carboxylates, despite the prevalence of ancillary charge-balancing oxide and hydroxide ligands found in many SBUs. Herein, we show that the μ
2 -OH ligands in the MIL-53 topology Sc MOF, GUF-1, are labile, and can be substituted for μ2 -OCH3 units through reaction with pore-bound methanol molecules in a very rare example of pressure-induced postsynthetic modification. Using comprehensive solid-state NMR spectroscopic analysis, we show an order of magnitude increase in this cluster anion substitution process after exposing bulk samples suspended in methanol to a pressure of 0.8 GPa in a large volume press. Additionally, single crystals compressed in diamond anvil cells with methanol as the pressure-transmitting medium have enabled full structural characterisation of the process across a range of pressures, leading to a quantitative single-crystal to single-crystal conversion at 4.98 GPa. This unexpected SBU reactivity - in this case chemisorption of methanol - has implications across a range of MOF chemistry, from activation of small molecules for heterogeneous catalysis to chemical stability, and we expect cluster anion substitution to be developed into a highly convenient novel method for modifying the internal pore surface and chemistry of a range of porous materials., Competing Interests: The authors declare no competing interests., (This journal is © The Royal Society of Chemistry.)- Published
- 2023
- Full Text
- View/download PDF
8. Formation of a meltable purinate metal-organic framework and its glass analogue.
- Author
-
Bumstead AM, Castillo-Blas C, Pakamorė I, Thorne MF, Sapnik AF, Chester AM, Robertson G, Irving DJM, Chater PA, Keen DA, Forgan RS, and Bennett TD
- Abstract
The chemistries that can be incorporated within melt-quenched zeolitic imidazolate framework (ZIF) glasses are currently limited. Here we describe the preparation of a previously unknown purine-containing ZIF which we name ZIF-UC-7. We find that it melts and forms a glass at one of the lowest temperatures reported for 3D hybrid frameworks.
- Published
- 2023
- Full Text
- View/download PDF
9. Glycopolymer-Functionalized MOF-808 Nanoparticles as a Cancer-Targeted Dual Drug Delivery System for Carboplatin and Floxuridine.
- Author
-
Demir Duman F, Monaco A, Foulkes R, Becer CR, and Forgan RS
- Abstract
Codelivery of chemotherapeutics via nanomaterials has attracted much attention over the last decades due to improved drug delivery to tumor tissues, decreased systemic effects, and increased therapeutic efficacies. High porosities, large pore volumes and surface areas, and tunable structures have positioned metal-organic frameworks (MOFs) as promising drug delivery systems (DDSs). In particular, nanoscale Zr-linked MOFs such as MOF-808 offer notable advantages for biomedical applications such as high porosity, good stability, and biocompatibility. In this study, we report efficient dual drug delivery of floxuridine (FUDR) and carboplatin (CARB) loaded in MOF-808 nanoparticles to cancer cells. The nanoparticles were further functionalized by a poly(acrylic acid-mannose acrylamide) (PAAMAM) glycopolymer coating to obtain a highly selective DDS in cancer cells and enhance the therapeutic efficacy of chemotherapy. While MOF-808 was found to enhance the individual therapeutic effects of FUDR and CARB toward cancerous cells, combining FUDR and CARB was seen to cause a synergistic effect, further enhancing the cytotoxicity of the free drugs. Enhancement of CARB loading and therefore cytotoxicity of the CARB-loaded MOFs could be induced through a modified activation protocol, while coating of MOF-808 with the PAAMAM glycopolymer increased the uptake of the nanoparticles in cancer cells used in the study and offered a particularly significant selective drug delivery with high cytotoxicity in HepG2 human hepatocellular carcinoma cells. These results show how the enhancement of cytotoxicity is possible through both nanovector delivery and synergistic treatment, and that MOF-808 is a viable candidate for future drug delivery studies., Competing Interests: The authors declare no competing financial interest., (© 2022 The Authors. Published by American Chemical Society.)
- Published
- 2022
- Full Text
- View/download PDF
10. From Gas Phase Observations to Solid State Reality: The Identification and Isolation of Trinuclear Salicylaldoximato Copper Complexes.
- Author
-
Roach BD, Forgan RS, Kamenetzky E, Parsons S, Plieger PG, White FJ, Woodhouse S, and Tasker PA
- Subjects
- Ligands, Oximes, Oxygen, Solvents, Copper chemistry, Ferric Compounds
- Abstract
Conditions have been identified in which phenolic aldoximes and ketoximes of the types used in commercial solvent extraction processes can be doubly deprotonated and generate polynuclear Cu complexes with lower extractant:Cu molar ratios than those found in commercial operations. Electrospray mass spectrometry has provided an insight into the solution speciation in extraction experiments and has identified conditions to allow isolation and characterization of polynuclear Cu-complexes. Elevation of pH is effective in enhancing the formation of trinuclear complexes containing planar {Cu
3 -μ3 -O}4+ or {Cu3 -μ3 -OH}5+ units. DFT calculations suggest that such trinuclear complexes are more stable than other polynuclear species. Solid structures of complexes formed by a salicylaldoxime with a piperidino substituent ortho to the phenolic OH group ( L9 H2 ) contain two trinuclear units in a supramolecular assembly, {[Cu3 OH( L9 H)3 (ClO4 )](ClO4 )}2 , formed by H-bonding between the central {Cu3 -μ3 -OH}5+ units and oxygen atoms in the ligands of an adjacent complex. Whilst the lower ligand:Cu molar ratios provide more efficient Cu-loading in solvent extraction processes, the requirement to raise the pH of the aqueous phase to achieve this will make it impractical in most commercial operations because extraction will be accompanied by the precipitation (as oxyhydroxides) of Fe(III) which is present in significant quantities in feed solutions generated by acid leaching of most Cu ores.- Published
- 2022
- Full Text
- View/download PDF
11. Controlling the Flexibility of MIL-88A(Sc) Through Synthetic Optimisation and Postsynthetic Halogenation.
- Author
-
Walshe CA, Thom AJR, Wilson C, Ling S, and Forgan RS
- Abstract
Breathing behaviour in metal-organic frameworks (MOFs), the distinctive transformation between a porous phase and a less (or non) porous phase, often controls the uptake of guest molecules, endowing flexible MOFs with highly selective gas adsorptive properties. In highly flexible topologies, breathing can be tuned by linker modification, which is typically achieved pre-synthetically using functionalised linkers. Herein, it was shown that MIL-88A(Sc) exhibits the characteristic flexibility of its topology, which can be tuned by 1) modifying synthetic conditions to yield a formate-buttressed analogue that is rigid and porous; and 2) postsynthetic bromination across the alkene functionality of the fumarate ligand, generating a product that is rigid but non-porous. In addition to providing different methodologies for tuning the flexibility and breathing behaviour of this archetypal MOF, it was shown that bromination of the formate-bridged analogue results in an identical material, representing a rare example of two different MOFs being postsynthetically converted to the same end product., (© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
12. How Reproducible are Surface Areas Calculated from the BET Equation?
- Author
-
Osterrieth JWM, Rampersad J, Madden D, Rampal N, Skoric L, Connolly B, Allendorf MD, Stavila V, Snider JL, Ameloot R, Marreiros J, Ania C, Azevedo D, Vilarrasa-Garcia E, Santos BF, Bu XH, Chang Z, Bunzen H, Champness NR, Griffin SL, Chen B, Lin RB, Coasne B, Cohen S, Moreton JC, Colón YJ, Chen L, Clowes R, Coudert FX, Cui Y, Hou B, D'Alessandro DM, Doheny PW, Dincă M, Sun C, Doonan C, Huxley MT, Evans JD, Falcaro P, Ricco R, Farha O, Idrees KB, Islamoglu T, Feng P, Yang H, Forgan RS, Bara D, Furukawa S, Sanchez E, Gascon J, Telalović S, Ghosh SK, Mukherjee S, Hill MR, Sadiq MM, Horcajada P, Salcedo-Abraira P, Kaneko K, Kukobat R, Kenvin J, Keskin S, Kitagawa S, Otake KI, Lively RP, DeWitt SJA, Llewellyn P, Lotsch BV, Emmerling ST, Pütz AM, Martí-Gastaldo C, Padial NM, García-Martínez J, Linares N, Maspoch D, Suárez Del Pino JA, Moghadam P, Oktavian R, Morris RE, Wheatley PS, Navarro J, Petit C, Danaci D, Rosseinsky MJ, Katsoulidis AP, Schröder M, Han X, Yang S, Serre C, Mouchaham G, Sholl DS, Thyagarajan R, Siderius D, Snurr RQ, Goncalves RB, Telfer S, Lee SJ, Ting VP, Rowlandson JL, Uemura T, Iiyuka T, van der Veen MA, Rega D, Van Speybroeck V, Rogge SMJ, Lamaire A, Walton KS, Bingel LW, Wuttke S, Andreo J, Yaghi O, Zhang B, Yavuz CT, Nguyen TS, Zamora F, Montoro C, Zhou H, Kirchon A, and Fairen-Jimenez D
- Subjects
- Adsorption, Porosity, Reproducibility of Results
- Abstract
Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible., (© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
13. MOF nanoparticles as heterogeneous catalysts for direct amide bond formations.
- Author
-
Abánades Lázaro I, Forgan RS, and Cirujano FG
- Abstract
The influence of composition and textural characteristics of a family of ultra-small isoreticular UiO-type metal-organic frameworks (MOFs) with different functionalized and extended linkers on their catalytic performance is evaluated. Two direct amide bond formations across four different substrates (benzylamine + phenylacetic acid and aniline + formic acid) are employed as proof-of-concept reactions to test the activity of the Zr-MOF nanoparticles. The reaction rates of amide bond formation are evaluated against physico-chemical properties such as crystallinity, porosity, particle size or linker functionality, alongside the Lewis acid and hydrophobic properties of the MOFs, in order to gain insights into the catalytic mechanism and optimal properties for its enhancement.
- Published
- 2022
- Full Text
- View/download PDF
14. Post-Synthetic Modification of a Metal-Organic Framework Glass.
- Author
-
Bumstead AM, Pakamorė I, Richards KD, Thorne MF, Boyadjieva SS, Castillo-Blas C, McHugh LN, Sapnik AF, Keeble DS, Keen DA, Evans RC, Forgan RS, and Bennett TD
- Abstract
Melt-quenched metal-organic framework (MOF) glasses have gained significant interest as the first new category of glass reported in 50 years. In this work, an amine-functionalized zeolitic imidazolate framework (ZIF), denoted ZIF-UC-6, was prepared and demonstrated to undergo both melting and glass formation. The presence of an amine group resulted in a lower melting temperature compared to other ZIFs, while also allowing material properties to be tuned by post-synthetic modification (PSM). As a prototypical example, the ZIF glass surface was functionalized with octyl isocyanate, changing its behavior from hydrophilic to hydrophobic. PSM therefore provides a promising strategy for tuning the surface properties of MOF glasses., Competing Interests: The authors declare no competing financial interest., (© 2022 American Chemical Society.)
- Published
- 2022
- Full Text
- View/download PDF
15. Exploring and expanding the Fe-terephthalate metal-organic framework phase space by coordination and oxidation modulation.
- Author
-
Bara D, Meekel EG, Pakamorė I, Wilson C, Ling S, and Forgan RS
- Abstract
The synthesis of phase pure metal-organic frameworks (MOFs) - network solids of metal clusters connected by organic linkers - is often complicated by the possibility of forming multiple diverse phases from one metal-ligand combination. For example, there are at least six Fe-terephthalate MOFs reported to date, with many examples in the literature of erroneous assignment of phase based on diffraction data alone. Herein, we show that modulated self-assembly can be used to influence the kinetics of self-assembly of Fe-terephthalate MOFs. We comprehensively assess the effect of addition of both coordinating modulators and pH modulators on the outcome of syntheses, as well as probing the influence of the oxidation state of the Fe precursor (oxidation modulation) and the role of the counteranion on the phase(s) formed. In doing so, we shed light on the thermodynamic landscape of this phase system, uncover mechanistics of modulation, provide robust routes to phase pure materials, often as single crystals, and introduce two new Fe-terephthalate MOFs to an already complex system. The results highlight the potential of modulated self-assembly to bring precision control and new structural diversity to systems that have already received significant study.
- Published
- 2021
- Full Text
- View/download PDF
16. Photophysics of Azobenzene Constrained in a UiO Metal-Organic Framework: Effects of Pressure, Solvation and Dynamic Disorder.
- Author
-
Sussardi A, Marshall RJ, Moggach SA, Jones AC, and Forgan RS
- Subjects
- Metals, Molecular Conformation, Azo Compounds, Metal-Organic Frameworks
- Abstract
Photophysical studies of chromophoric linkers in metal-organic frameworks (MOFs) are undertaken commonly in the context of sensing applications, in search of readily observable changes of optical properties in response to external stimuli. The advantages of the MOF construct as a platform for investigating fundamental photophysical behaviour have been somewhat overlooked. The linker framework offers a unique environment in which the chromophore is geometrically constrained and its structure can be determined crystallographically, but it exists in spatial isolation, unperturbed by inter-chromophore interactions. Furthermore, high-pressure studies enable the photophysical consequences of controlled, incremental changes in local environment or conformation to be observed and correlated with structural data. This approach is demonstrated in the present study of the trans-azobenzene chromophore, constrained in the form of the 4,4'-azobenzenedicarboxylate (abdc) linker, in a UiO topology framework. Previously unobserved effects of pressure-induced solvation and conformational distortion on the lowest energy, nπ* transition are reported, and interpreted the light of crystallographic data. It was found that trans-azobenzene remains non-fluorescent (with a quantum yield less than 10
-4 ) despite the prevention of trans-cis isomerization by the constraining MOF structure. We propose that efficient non-radiative decay is mediated by the local, pedal-like twisting of the azo group that is evident as dynamic disorder in the crystal structure., (© 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.)- Published
- 2021
- Full Text
- View/download PDF
17. Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine.
- Author
-
Demir Duman F and Forgan RS
- Subjects
- Animals, Antineoplastic Agents chemical synthesis, Antineoplastic Agents pharmacology, Humans, Metal-Organic Frameworks chemical synthesis, Metal-Organic Frameworks pharmacology, Neoplasms drug therapy, Photosensitizing Agents chemical synthesis, Photosensitizing Agents pharmacology, Antineoplastic Agents chemistry, Metal-Organic Frameworks chemistry, Nanoparticles chemistry, Neoplasms diagnostic imaging, Photosensitizing Agents chemistry
- Abstract
Nanoscale metal-organic frameworks (NMOFs) are an interesting and unique class of hybrid porous materials constructed by the self-assembly of metal ions/clusters with organic linkers. The high storage capacities, facile synthesis, easy surface functionalization, diverse compositions and excellent biocompatibilities of NMOFs have made them promising agents for theranostic applications. By combination of a large variety of metal ions and organic ligands, and incorporation of desired molecular functionalities including imaging modalities and therapeutic molecules, diverse MOF structures with versatile functionalities can be obtained and utilized in biomedical imaging and drug delivery. In recent years, NMOFs have attracted great interest as imaging agents in optical imaging (OI), magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET) and photoacoustic imaging (PAI). Furthermore, the significant porosity of MOFs allows them to be loaded with multiple imaging agents and therapeutics simultaneously and applied for multimodal imaging and therapy as a single entity. In this review, which is intended as an introduction to the use of MOFs in biomedical imaging for a reader entering the subject, we summarize the up-to-date progress of NMOFs as bioimaging agents, giving (i) a broad perspective of the varying imaging techniques that MOFs can enable, (ii) the different routes to manufacturing functionalised MOF nanoparticles and hybrids, and (iii) the integration of imaging with differing therapeutic techniques. The current challenges and perspectives of NMOFs for their further clinical translation are also highlighted and discussed.
- Published
- 2021
- Full Text
- View/download PDF
18. Immobilising giant unilamellar vesicles with zirconium metal-organic framework anchors.
- Author
-
Jennings CS, Rossman JS, Hourihan BA, Marshall RJ, Forgan RS, and Blight BA
- Subjects
- Lipid Bilayers, Microscopy, Zirconium, Metal-Organic Frameworks, Unilamellar Liposomes
- Abstract
Lipid bilayer vesicles have provided a window into the function and fundamental properties of cells. However, as is the case for most living and soft matter, vesicles do not remain still. This necessitates some microscopy experiments to include a preparatory immobilisation step. Here, we describe a straightforward method to immobilise giant unilamellar vesicles (GUVs) using zirconium-based metal-organic frameworks (MOFs) and demonstrate that GUVs bound in this way will stay in position on a timescale of minutes to hours.
- Published
- 2021
- Full Text
- View/download PDF
19. Identifying Differing Intracellular Cargo Release Mechanisms by Monitoring In Vitro Drug Delivery from MOFs in Real Time.
- Author
-
Markopoulou P, Panagiotou N, Li A, Bueno-Perez R, Madden D, Buchanan S, Fairen-Jimenez D, Shiels PG, and Forgan RS
- Abstract
Metal-organic frameworks (MOFs) have been proposed as biocompatible candidates for the targeted intracellular delivery of chemotherapeutic payloads, but the site of drug loading and subsequent effect on intracellular release is often overlooked. Here, we analyze doxorubicin delivery to cancer cells by MIL-101(Cr) and UiO-66 in real time. Having experimentally and computationally verified that doxorubicin is pore loaded in MIL-101(Cr) and surface loaded on UiO-66, different time-dependent cytotoxicity profiles are observed by real-time cell analysis and confocal microscopy. The attenuated release of aggregated doxorubicin from the surface of Dox@UiO-66 results in a 12 to 16 h induction of cytotoxicity, while rapid release of pore-dispersed doxorubicin from Dox@MIL-101(Cr) leads to significantly higher intranuclear localization and rapid cell death. In verifying real-time cell analysis as a versatile tool to assess biocompatibility and drug delivery, we show that the localization of drugs in (or on) MOF nanoparticles controls delivery profiles and is key to understanding in vitro modes of action., Competing Interests: The authors declare no competing interests., (© 2020 The Author(s).)
- Published
- 2020
- Full Text
- View/download PDF
20. Controlled Transdermal Release of Antioxidant Ferulate by a Porous Sc(III) MOF.
- Author
-
Osorio-Toribio G, Velásquez-Hernández MJ, Mileo PGM, Zárate JA, Aguila-Rosas J, Leyva-Gómez G, Sánchez-Sánchez R, Magaña JJ, Pérez-Díaz MA, Lázaro IA, Forgan RS, Maurin G, Lima E, and Ibarra IA
- Abstract
The Sc(III) MOF-type MFM-300(Sc) is demonstrated in this study to be stable under physiological conditions (PBS), biocompatible (to human skin cells), and an efficient drug carrier for the long-term controlled release (through human skin) of antioxidant ferulate. MFM-300(Sc) also preserves the antioxidant pharmacological effects of ferulate while enhancing the bio-preservation of dermal skin fibroblasts, during the delivery process. These discoveries pave the way toward the extended use of Sc(III)-based MOFs as drug delivery systems (DDSs)., Competing Interests: Declaration of Interests The authors declare no competing interests., (Crown Copyright © 2020. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
21. Assessing Crystallisation Kinetics of Zr Metal-Organic Frameworks through Turbidity Measurements to Inform Rapid Microwave-Assisted Synthesis.
- Author
-
Griffin SL, Briuglia ML, Ter Horst JH, and Forgan RS
- Abstract
Controlling the crystallisation of metal-organic frameworks (MOFs), network solids of metal ions or clusters connected by organic ligands, is often hindered by the significant number of synthetic variables inherent to their synthesis. Coordination modulation, the addition of monotopic competing ligands to solvothermal syntheses, can allow tuning of physical properties (particle size, porosity, surface chemistry), enhance crystallinity, and select desired phases, by modifying the kinetics of self-assembly, but its mechanism(s) are poorly understood. Herein, turbidity measurements were used to assess the effects of modulation on the solvothermal synthesis of the prototypical Zr terephthalate MOF UiO-66 and the knowledge gained was applied to its rapid microwave synthesis. The studied experimental parameters-temperature, reagent concentration, reagent aging, metal precursor, water content, and modulator addition-all influence the time taken for onset of nucleation, and subsequently allow microwave synthesis of UiO-66 in as little as one minute. The simple, low cost turbidity measurements align closely with previously reported in situ synchrotron X-ray diffraction studies, proving their simplicity and utility for probing the nucleation of complex materials while offering significant insights to the synthetic chemist., (© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.)
- Published
- 2020
- Full Text
- View/download PDF
22. Correlating Pressure-Induced Emission Modulation with Linker Rotation in a Photoluminescent MOF.
- Author
-
Sussardi A, Hobday CL, Marshall RJ, Forgan RS, Jones AC, and Moggach SA
- Abstract
Conformational changes of linker units in metal-organic frameworks (MOFs) are often responsible for gate-opening phenomena in selective gas adsorption and stimuli-responsive optical and electrical sensing behaviour. Herein, we show that pressure-induced bathochromic shifts in both fluorescence emission and UV/Vis absorption spectra of a two-fold interpenetrated Hf MOF, linked by 1,4-phenylene-bis(4-ethynylbenzoate) ligands (Hf-peb), are induced by rotation of the central phenyl ring of the linker, from a coplanar arrangement to a twisted, previously unseen conformer. Single-crystal X-ray diffraction, alongside in situ fluorescence and UV/Vis absorption spectroscopies, measured up to 2.1 GPa in a diamond anvil cell on single crystals, are in excellent agreement, correlating linker rotation with modulation of emission. Topologically isolating the 1,4-phenylene-bis(4-ethynylbenzoate) units within a MOF facilitates concurrent structural and spectroscopic studies in the absence of intermolecular perturbation, allowing characterisation of the luminescence properties of a high-energy, twisted conformation of the previously well-studied chromophore. We expect the unique environment provided by network solids, and the capability of combining crystallographic and spectroscopic analysis, will greatly enhance understanding of luminescent molecules and lead to the development of novel sensors and adsorbents., (© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.)
- Published
- 2020
- Full Text
- View/download PDF
23. Design of a Functionalized Metal-Organic Framework System for Enhanced Targeted Delivery to Mitochondria.
- Author
-
Haddad S, Abánades Lázaro I, Fantham M, Mishra A, Silvestre-Albero J, Osterrieth JWM, Kaminski Schierle GS, Kaminski CF, Forgan RS, and Fairen-Jimenez D
- Subjects
- Humans, Drug Delivery Systems methods, Metal-Organic Frameworks metabolism, Mitochondria metabolism
- Abstract
Mitochondria play a key role in oncogenesis and constitute one of the most important targets for cancer treatments. Although the most effective way to deliver drugs to mitochondria is by covalently linking them to a lipophilic cation, the in vivo delivery of free drugs still constitutes a critical bottleneck. Herein, we report the design of a mitochondria-targeted metal-organic framework (MOF) that greatly increases the efficacy of a model cancer drug, reducing the required dose to less than 1% compared to the free drug and ca. 10% compared to the nontargeted MOF. The performance of the system is evaluated using a holistic approach ranging from microscopy to transcriptomics. Super-resolution microscopy of MCF-7 cells treated with the targeted MOF system reveals important mitochondrial morphology changes that are clearly associated with cell death as soon as 30 min after incubation. Whole transcriptome analysis of cells indicates widespread changes in gene expression when treated with the MOF system, specifically in biological processes that have a profound effect on cell physiology and that are related to cell death. We show how targeting MOFs toward mitochondria represents a valuable strategy for the development of new drug delivery systems.
- Published
- 2020
- Full Text
- View/download PDF
24. Modulated self-assembly of metal-organic frameworks.
- Author
-
Forgan RS
- Abstract
Exercising fine control over the synthesis of metal-organic frameworks (MOFs) is key to ensuring reproducibility of physical properties such as crystallinity, particle size, morphology, porosity, defectivity, and surface chemistry. The principle of modulated self-assembly - incorporation of modulator molecules into synthetic mixtures - has emerged as the primary means to this end. This perspective article will detail the development of modulated synthesis, focusing primarily on coordination modulation, from a technique initially intended to cap the growth of MOF crystals to one that is now used regularly to enhance crystallinity, control particle size, induce defectivity and select specific phases. The various mechanistic driving forces will be discussed, as well as the influence of modulation on physical properties and how this can facilitate potential applications. Modulation is also increasingly being used to exert kinetic control over self-assembly; examples of phase selection and the development of new protocols to induce this will be provided. Finally, the application of modulated self-assembly to alternative materials will be discussed, and future perspectives on the area given., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)
- Published
- 2020
- Full Text
- View/download PDF
25. Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery.
- Author
-
Abánades Lázaro I, Wells CJR, and Forgan RS
- Subjects
- Alendronate chemistry, Alendronate pharmacology, Antineoplastic Agents pharmacology, Apoptosis drug effects, Catalysis, Coumaric Acids chemistry, Coumaric Acids pharmacology, Dichloroacetic Acid chemistry, Dichloroacetic Acid pharmacology, Drug Compounding, Drug Therapy, Combination, Humans, Ibuprofen chemistry, Ibuprofen pharmacology, MCF-7 Cells, Porosity, Antineoplastic Agents chemistry, Metal-Organic Frameworks chemistry, Nanocapsules chemistry, Zirconium chemistry
- Abstract
Metal-organic frameworks (MOFs) are emerging as leading candidates for nanoscale drug delivery, as a consequence of their high drug capacities, ease of functionality, and the ability to carefully engineer key physical properties. Despite many anticancer treatment regimens consisting of a cocktail of different drugs, examples of delivery of multiple drugs from one MOF are rare, potentially hampered by difficulties in postsynthetic loading of more than one cargo molecule. Herein, we report a new strategy, multivariate modulation, which allows incorporation of up to three drugs in the Zr MOF UiO-66 by defect-loading. The drugs are added to one-pot solvothermal synthesis and are distributed throughout the MOF at defect sites by coordination to the metal clusters. This tight binding comes with retention of crystallinity and porosity, allowing a fourth drug to be postsynthetically loaded into the MOFs to yield nanoparticles loaded with cocktails of drugs that show enhancements in selective anticancer cytotoxicity against MCF-7 breast cancer cells in vitro. We believe that multivariate modulation is a significant advance in the application of MOFs in biomedicine, and anticipate the protocol will also be adopted in other areas of MOF chemistry, to easily produce defective MOFs with arrays of highly functionalised pores for potential application in gas separations and catalysis., (© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.)
- Published
- 2020
- Full Text
- View/download PDF
26. The surface chemistry of metal-organic frameworks and their applications.
- Author
-
Forgan RS
- Abstract
Modifying the outer surfaces of metal-organic frameworks (MOFs) has received considerably less attention than functionalization of the bulk, despite the range of physical and chemical properties that can be tuned by controlling MOF surface chemistry. In this Frontier article, we summarise developments over the last five years in both functionalizing and visualizing the outer surfaces of MOFs, with particular focus on their application as surface-modified nanoparticles for drug delivery and in the enhanced self-assembly of hybrid materials.
- Published
- 2019
- Full Text
- View/download PDF
27. Kinetic Control of Interpenetration in Fe-Biphenyl-4,4'-dicarboxylate Metal-Organic Frameworks by Coordination and Oxidation Modulation.
- Author
-
Bara D, Wilson C, Mörtel M, Khusniyarov MM, Ling S, Slater B, Sproules S, and Forgan RS
- Abstract
Phase control in the self-assembly of metal-organic frameworks (MOFs) is often a case of trial and error; judicious control over a number of synthetic variables is required to select the desired topology and control features such as interpenetration and defectivity. Herein, we present a comprehensive investigation of self-assembly in the Fe-biphenyl-4,4'-dicarboxylate system, demonstrating that coordination modulation can reliably tune between the kinetic product, noninterpenetrated MIL-88D(Fe), and the thermodynamic product, two-fold interpenetrated MIL-126(Fe). Density functional theory simulations reveal that correlated disorder of the terminal anions on the metal clusters results in hydrogen bonding between adjacent nets in the interpenetrated phase and this is the thermodynamic driving force for its formation. Coordination modulation slows self-assembly and therefore selects the thermodynamic product MIL-126(Fe), while offering fine control over defectivity, inducing mesoporosity, but electron microscopy shows MIL-88D(Fe) persists in many samples despite not being evident by diffraction. Interpenetration control is also demonstrated using the 2,2'-bipyridine-5,5'-dicarboxylate linker; it is energetically prohibitive for it to adopt the twisted conformation required to form the interpenetrated phase, although multiple alternative phases are identified due to additional coordination of Fe cations to its N donors. Finally, we introduce oxidation modulation-the use of metal precursors in different oxidation states from that found in the final MOF-to kinetically control self-assembly. Combining coordination and oxidation modulation allows the synthesis of pristine MIL-126(Fe) with BET surface areas close to the predicted maximum for the first time, suggesting that combining the two may be a powerful methodology for the controlled self-assembly of high-valent MOFs.
- Published
- 2019
- Full Text
- View/download PDF
28. Uncovering the Structural Diversity of Y(III) Naphthalene-2,6-Dicarboxylate MOFs Through Coordination Modulation.
- Author
-
Griffin SL, Wilson C, and Forgan RS
- Abstract
Metal-organic frameworks (MOFs)-network structures built from metal ions or clusters and connecting organic ligands-are typically synthesized by solvothermal self-assembly. For transition metal based MOFs, structural predictability is facilitated by control over coordination geometries and linker connectivity under the principles of isoreticular synthesis. For rare earth (RE) MOFs, coordination behavior is dominated by steric and electronic factors, leading to unpredictable structures, and poor control over self-assembly. Herein we show that coordination modulation-the addition of competing ligands into MOF syntheses-offers programmable access to six different Y(III) MOFs all connected by the same naphthalene-2,6-dicarboxylate ligand, despite controlled synthesis of multiple phases from the same metal-ligand combination often being challenging for rare earth MOFs. Four of the materials are isolable in bulk phase purity, three are amenable to rapid microwave synthesis, and the fluorescence sensing ability of one example toward metal cations is reported. The results show that a huge variety of structurally versatile MOFs can potentially be prepared from simple systems, and that coordination modulation is a powerful tool for systematic control of phase behavior in rare earth MOFs.
- Published
- 2019
- Full Text
- View/download PDF
29. Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery.
- Author
-
Abánades Lázaro I, Haddad S, Rodrigo-Muñoz JM, Marshall RJ, Sastre B, Del Pozo V, Fairen-Jimenez D, and Forgan RS
- Subjects
- Animals, Cell Survival drug effects, HEK293 Cells, HeLa Cells, Humans, MCF-7 Cells, Metal-Organic Frameworks toxicity, Drug Delivery Systems, Fumarates chemistry, Immune System drug effects, Metal-Organic Frameworks chemistry, Metal-Organic Frameworks pharmacology, Zirconium chemistry
- Abstract
Metal-organic frameworks (MOFs), network structures wherein metal ions or clusters link organic ligands into porous materials, are being actively researched as nanoscale drug delivery devices as they offer tunable structures with high cargo loading that can easily be further functionalized for targeting and enhanced physiological stability. The excellent biocompatibility of Zr has meant that its MOFs are among the most studied to date, in particular the archetypal Zr terephthalate UiO-66. In contrast, the isoreticular analog linked by fumarate (Zr-fum) has received little attention, despite the endogenous linker being part of the Krebs cycle. Herein, we report a comprehensive study of Zr-fum in the context of drug delivery. Reducing particle size is shown to increase uptake by cancer cells while reducing internalization by macrophages, immune system cells that remove foreign objects from the bloodstream. Zr-fum is compatible with defect loading of the drug dichloroacetate (DCA) as well as surface modification during synthesis, through coordination modulation and postsynthetically. DCA-loaded, PEGylated Zr-fum shows selective in vitro cytotoxicity toward HeLa and MCF-7 cancer cells, likely as a consequence of its enhanced caveolae-mediated endocytosis compared to uncoated precursors, and it is well tolerated by HEK293 kidney cells, J774 macrophages, and human peripheral blood lymphocytes. Compared to UiO-66, Zr-fum is more efficient at transporting the drug mimic calcein into HeLa cells, and DCA-loaded, PEGylated Zr-fum is more effective at reducing HeLa and MCF-7 cell proliferation than the analogous UiO-66 sample. In vitro examination of immune system response shows that Zr-fum samples induce less reactive oxygen species than UiO-66 analogs, possibly as a consequence of the linker being endogenous, and do not activate the C3 and C4 complement cascade pathways, suggesting that Zr-fum can avoid phagocytic activation. The results show that Zr-fum is an attractive alternative to UiO-66 for nanoscale drug delivery, and that a wide range of in vitro experiments is available to greatly inform the design of drug delivery systems prior to early stage animal studies.
- Published
- 2018
- Full Text
- View/download PDF
30. Targetable Mechanical Properties by Switching between Self-Sorting and Co-assembly with In Situ Formed Tripodal Ketoenamine Supramolecular Hydrogels.
- Author
-
Foster JS, Prentice AW, Forgan RS, Paterson MJ, and Lloyd GO
- Abstract
A new family of supramolecular hydrogelators are introduced in which self-sorting and co-assembly can be utilised in the tuneability of the mechanical properties of the materials, a property closely tied to the nanostructure of the gel network. The in situ reactivity of the components of the gelators allows for system chemistry concepts to be applied to the formation of the gels and shows that molecular properties, and not necessarily the chemical identity, determines some gel properties in these family of gels., Competing Interests: The authors declare no conflict of interest.
- Published
- 2018
- Full Text
- View/download PDF
31. Simultaneous neutron powder diffraction and microwave dielectric studies of ammonia absorption in metal-organic framework systems.
- Author
-
Barter M, Hartley J, Yazigi FJ, Marshall RJ, Forgan RS, Porch A, and Jones MO
- Abstract
Ammonia absorption has been investigated in metal-organic frameworks (UiO-67, HKUST-1 and CPO-27-Co) using custom-built apparatus that allows simultaneous neutron powder diffraction (NPD), microwave dielectric characterisation and out-gas mass spectroscopy of solid-state materials during ammonia adsorption. Deuterated ammonia was flowed through the sample and absorption monitored using mass flow meters and mass spectroscopy. Argon gas was then flowed through the ammoniated sample to cause ammonia desorption. Changes in structure found from NPD measurements were compared to changes in dielectric characteristics to differentiate physisorbed and metal-coordinated ammonia, as well as determine decomposition of sample materials. The results of these studies allow the identification of materials with useful ammonia storage properties and provides a new metric for the measurement of gas absorption within mesoporous solids.
- Published
- 2018
- Full Text
- View/download PDF
32. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles.
- Author
-
Abánades Lázaro I, Abánades Lázaro S, and Forgan RS
- Subjects
- Antineoplastic Agents chemical synthesis, Antineoplastic Agents chemistry, Cell Proliferation drug effects, Cell Survival drug effects, Dichloroacetic Acid chemistry, Dichloroacetic Acid pharmacology, Dose-Response Relationship, Drug, Drug Screening Assays, Antitumor, Fluorouracil chemistry, Fluorouracil pharmacology, Humans, MCF-7 Cells, Metal-Organic Frameworks chemical synthesis, Metal-Organic Frameworks chemistry, Models, Molecular, Molecular Structure, Structure-Activity Relationship, Zirconium chemistry, Antineoplastic Agents pharmacology, Drug Delivery Systems, Metal-Organic Frameworks pharmacology, Nanoparticles chemistry, Zirconium pharmacology
- Abstract
Dual delivery of dichloroacetate and 5-fluorouracil from Zr MOFs into cancer cells is found to enhance in vitro cytotoxicity. Tuning particle size and, more significantly, surface chemistry, further improves cytotoxicity by promoting caveolae-mediated endocytosis and cytosolic cargo delivery.
- Published
- 2018
- Full Text
- View/download PDF
33. Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles.
- Author
-
Abánades Lázaro I, Haddad S, Rodrigo-Muñoz JM, Orellana-Tavra C, Del Pozo V, Fairen-Jimenez D, and Forgan RS
- Subjects
- Acetates, Animals, Antineoplastic Agents, Chlorine Compounds, Drug Delivery Systems, HEK293 Cells, Humans, Immune System, Metal-Organic Frameworks, Polyethylene Glycols, Metal Nanoparticles chemistry
- Abstract
The high drug-loading and excellent biocompatibilities of metal-organic frameworks (MOFs) have led to their application as drug-delivery systems (DDSs). Nanoparticle surface chemistry dominates both biostability and dispersion of DDSs while governing their interactions with biological systems, cellular and/or tissue targeting, and cellular internalization, leading to a requirement for versatile and reproducible surface functionalization protocols. Herein, we explore not only the effect of introducing different surface functionalities to the biocompatible Zr-MOF UiO-66 but also the efficacy of three surface modification protocols: (i) direct attachment of biomolecules [folic acid (FA) and biotin (Biot)] introduced as modulators for UiO-66 synthesis, (ii) our previously reported "click-modulation" approach to covalently attach polymers [poly(ethylene glycol) (PEG), poly-l-lactide, and poly-N-isopropylacrylamide] to the surface of UiO-66 through click chemistry, and (iii) surface ligand exchange to postsynthetically coordinate FA, Biot, and heparin to UiO-66. The innovative use of a small molecule with metabolic anticancer activity, dichloroacetate (DCA), as a modulator during synthesis is described, and it is found to be compatible with all three protocols, yielding surface-coated, DCA-loaded (10-20 w/w %) nano-MOFs (70-170 nm). External surface modification generally enhances the stability and colloidal dispersion of UiO-66. Cellular internalization routes and efficiencies of UiO-66 by HeLa cervical cancer cells can be tuned by surface chemistry, and anticancer cytotoxicity of DCA-loaded MOFs correlates with the endocytosis efficiency and mechanisms. The MOFs with the most promising coatings (FA, PEG, poly-l-lactide, and poly-N-isopropylacrylamide) were extensively tested for selectivity of anticancer cytotoxicity against MCF-7 breast cancer cells and HEK293 healthy kidney cells as well as for cell proliferation and reactive oxygen species production against J774 macrophages and peripheral blood lymphocytes isolated from the blood of human donors. DCA-loaded, FA-modified UiO-66 selectively kills cancer cells without harming healthy ones or provoking immune system response in vitro, suggesting a significant targeting effect and great potential in anticancer drug delivery. The results provide mechanistic insight into the design and functionalization of MOFs for drug delivery and underline the availability of various in vitro techniques to potentially minimize early-stage in vivo animal studies following the three Rs: reduction, refinement, and replacement.
- Published
- 2018
- Full Text
- View/download PDF
34. Tuning the Endocytosis Mechanism of Zr-Based Metal-Organic Frameworks through Linker Functionalization.
- Author
-
Orellana-Tavra C, Haddad S, Marshall RJ, Abánades Lázaro I, Boix G, Imaz I, Maspoch D, Forgan RS, and Fairen-Jimenez D
- Abstract
A critical bottleneck for the use of metal-organic frameworks (MOFs) as drug delivery systems has been allowing them to reach their intracellular targets without being degraded in the acidic environment of the lysosomes. Cells take up particles by endocytosis through multiple biochemical pathways, and the fate of these particles depends on these routes of entry. Here, we show the effect of functional group incorporation into a series of Zr-based MOFs on their endocytosis mechanisms, allowing us to design an efficient drug delivery system. In particular, naphthalene-2,6-dicarboxylic acid and 4,4'-biphenyldicarboxylic acid ligands promote entry through the caveolin-pathway, allowing the particles to avoid lysosomal degradation and be delivered into the cytosol and enhancing their therapeutic activity when loaded with drugs.
- Published
- 2017
- Full Text
- View/download PDF
35. Functional Versatility of a Series of Zr Metal-Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy.
- Author
-
Marshall RJ, Kalinovskyy Y, Griffin SL, Wilson C, Blight BA, and Forgan RS
- Abstract
Many of the desirable properties of metal-organic frameworks (MOFs) can be tuned by chemical functionalization of the organic ligands that connect their metal clusters into multidimensional network solids. When these linker molecules are intrinsically fluorescent, they can pass on this property to the resultant MOF, potentially generating solid-state sensors, as analytes can be bound within their porous interiors. Herein, we report the synthesis of a series of 14 interpenetrated Zr and Hf MOFs linked by functionalized 4,4'-[1,4-phenylene-bis(ethyne-2,1-diyl)]-dibenzoate (peb
2- ) ligands, and we analyze the effect of functional group incorporation on their structures and properties. Addition of methyl, fluoro, naphthyl, and benzothiadiazolyl units does not affect the underlying topology, but induces subtle structural changes, such as ligand rotation, and mediates host-guest interactions. Further, we demonstrate that solid-state photoluminescence spectroscopy can be used to probe these effects. For instance, introduction of naphthyl and benzothiadiazolyl units yields MOFs that can act as stable fluorescent water sensors, a dimethyl modified MOF exhibits a temperature dependent phase change controlled by steric clashes between interpenetrated nets, and a tetrafluorinated analogue is found to be superhydrophobic despite only partial fluorination of its organic backbone. These subtle changes in ligand structure coupled with the consistent framework topology give rise to a series of MOFs with a remarkable range of physical properties that are not observed with the ligands alone.- Published
- 2017
- Full Text
- View/download PDF
36. Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery.
- Author
-
Abánades Lázaro I, Haddad S, Sacca S, Orellana-Tavra C, Fairen-Jimenez D, and Forgan RS
- Abstract
The high storage capacities and excellent biocompatibilities of metal-organic frameworks (MOFs) have made them emerging candidates as drug-delivery vectors. Incorporation of surface functionality is a route to enhanced properties, and here we report on a surface-modification procedure-click modulation-that controls their size and surface chemistry. The zirconium terephthalate MOF UiO-66 is (1) synthesized as ∼200 nm nanoparticles coated with functionalized modulators, (2) loaded with cargo, and (3) covalently surface modified with poly(ethylene glycol) (PEG) chains through mild bioconjugate reactions. At pH 7.4, the PEG chains endow the MOF with enhanced stability toward phosphates and overcome the "burst release" phenomenon by blocking interaction with the exterior of the nanoparticles, whereas at pH 5.5, stimuli-responsive drug release is achieved. The mode of cellular internalization is also tuned by nanoparticle surface chemistry, such that PEGylated UiO-66 potentially escapes lysosomal degradation through enhanced caveolae-mediated uptake. This makes it a highly promising vector, as demonstrated for dichloroacetic-acid-loaded materials, which exhibit enhanced cytotoxicity. The versatility of the click modulation protocol will allow a wide range of MOFs to be easily surface functionalized for a number of applications.
- Published
- 2017
- Full Text
- View/download PDF
37. Drug delivery and controlled release from biocompatible metal-organic frameworks using mechanical amorphization.
- Author
-
Orellana-Tavra C, Marshall RJ, Baxter EF, Lázaro IA, Tao A, Cheetham AK, Forgan RS, and Fairen-Jimenez D
- Abstract
We have used a family of Zr-based metal-organic frameworks (MOFs) with different functionalized (bromo, nitro and amino) and extended linkers for drug delivery. We loaded the materials with the fluorescent model molecule calcein and the anticancer drug α-cyano-4-hydroxycinnamic acid (α-CHC), and consequently performed a mechanical amorphization process to attempt to control the delivery of guest molecules. Our analysis revealed that the loading values of both molecules were higher for the MOFs containing unfunctionalized linkers. Confocal microscopy showed that all the materials were able to penetrate into cells, and the therapeutic effect of α-CHC on HeLa cells was enhanced when loaded (20 wt%) into the MOF with the longest linker. On one hand, calcein release required up to 3 days from the crystalline form for all the materials. On the other hand, the amorphous counterparts containing the bromo and nitro functional groups released only a fraction of the total loaded amount, and in the case of the amino-MOF a slow and progressive release was successfully achieved for 15 days. In the case of the materials loaded with α-CHC, no difference was observed between the crystalline and amorphous form of the materials. These results highlight the necessity of a balance between the pore size of the materials and the size of the guest molecules to accomplish a successful and efficient sustained release using this mechanical ball-milling process. Additionally, the endocytic pathway used by cells to internalize these MOFs may lead to diverse final cellular locations and consequently, different therapeutic effects. Understanding these cellular mechanisms will drive the design of more effective MOFs for drug delivery applications.
- Published
- 2016
- Full Text
- View/download PDF
38. Stereoselective Halogenation of Integral Unsaturated C-C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs.
- Author
-
Marshall RJ, Griffin SL, Wilson C, and Forgan RS
- Abstract
Metal-organic frameworks (MOFs) containing Zr(IV) -based secondary building units (SBUs), as in the UiO-66 series, are receiving widespread research interest due to their enhanced chemical and mechanical stabilities. We report the synthesis and extensive characterisation, as both bulk microcrystalline and single crystal forms, of extended UiO-66 (Zr and Hf) series MOFs containing integral unsaturated alkene, alkyne and butadiyne units, which serve as reactive sites for postsynthetic modification (PSM) by halogenation. The water stability of a Zr-stilbene MOF allows the dual insertion of both -OH and -Br groups in a single, aqueous bromohydrination step. Quantitative bromination of alkyne- and butadiyne-containing MOFs is demonstrated to be stereoselective, as a consequence of the linker geometry when bound in the MOFs, while the inherent change in hybridisation and geometry of integral linker atoms is facilitated by the high mechanical stabilities of the MOFs, allowing bromination to be characterised in a single-crystal to single-crystal (SCSC) manner. The facile addition of bromine across the unsaturated C-C bonds in the MOFs in solution is extended to irreversible iodine sequestration in the vapour phase. A large-pore interpenetrated Zr MOF demonstrates an I2 storage capacity of 279 % w/w, through a combination of chemisorption and physisorption, which is comparable to the highest reported capacities of benchmark iodine storage materials for radioactive I2 sequestration. We expect this facile PSM process to not only allow trapping of toxic vapours, but also modulate the mechanical properties of the MOFs., (© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.)
- Published
- 2016
- Full Text
- View/download PDF
39. Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance.
- Author
-
Marshall RJ, Richards T, Hobday CL, Murphie CF, Wilson C, Moggach SA, Bennett TD, and Forgan RS
- Abstract
A new member of the UiO-66 series of zirconium metal-organic frameworks (MOFs) is reported, and the postsynthetic bromination of its integral alkene moeities in a single-crystal to single-crystal manner is fully characterised. Nanoindentation is used to probe the bromination of unsaturated carbon-carbon bonds, in it and an analogous Zr MOF, which leads to more compliant materials with lower elastic moduli.
- Published
- 2016
- Full Text
- View/download PDF
40. A Computational and Experimental Approach Linking Disorder, High-Pressure Behavior, and Mechanical Properties in UiO Frameworks.
- Author
-
Hobday CL, Marshall RJ, Murphie CF, Sotelo J, Richards T, Allan DR, Düren T, Coudert FX, Forgan RS, Morrison CA, Moggach SA, and Bennett TD
- Abstract
Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4 (abdc)6], abdc: 4,4'-azobenzene dicarboxylate) by single-crystal nanoindentation, high-pressure X-ray diffraction, density functional theory calculations, and first-principles molecular dynamics. On increasing pressure, both UiO-67 and UiO-abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo-linker of UiO-abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO-67, characterized by a large elastic modulus. The use of non-linear linkers in the synthesis of UiO-MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range., (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2016
- Full Text
- View/download PDF
41. EPR/ENDOR and Computational Study of Outer Sphere Interactions in Copper Complexes of Phenolic Oximes.
- Author
-
Healy MR, Carter E, Fallis IA, Forgan RS, Gordon RJ, Kamenetzky E, Love JB, Morrison CA, Murphy DM, and Tasker PA
- Abstract
Copper complexes of the phenolic oxime family of ligands (3-X-salicylaldoximes) are used extensively as metal solvent extractants. Incorporation of electronegative substituents in the 3-position, ortho to the phenol group, can be used to buttress the interligand H-bonding, leading to an enhancement in extractant strength. However, investigation of the relevant H-bonding in these complexes can be exceedingly difficult. Here, we have combined EPR, ENDOR, DFT, and X-ray crystallography to study this effect. Analysis of the (1)H ENDOR data revealed a variation in the Cu···H(16) (oxime proton) distance from 2.92 Å for the unsubstituted complex [Cu(L(2))2] to 3.65 Å for the X = CH2N(C6H13)2 substituted complex [Cu(L(3))2]. DFT calculations showed that this variation is caused by changes to the length and strength of the H-bond between the oximic hydrogen and the phenolate oxygen. Noticeable changes to the Cu···H(15) (azomethine proton) distances and the Cu···N bonding parameters were also observed in the two complexes, as revealed through the (N)A and (N)Q ENDOR data. Distortions in the structure of the complex and variations in the oximic proton to phenolate oxygen H-bond strength caused by the substituent (X) were confirmed by DFT and X-ray crystallography. DFT directly evidenced the importance of the interaction between H(16) and the amine nitrogen of CH2N(C6H13)2 in the buttressed complex and indicated that the high strength of this interaction may not necessarily lead to an enhancement of copper extraction, as it can impose an unfavorable geometry in the inner coordination sphere of the complex. Therefore, ENDOR, DFT, and X-ray structural data all indicate that the aminomethyl substituent (X) ortho to the phenolic oxygen atom provides a particularly strong buttressing of interligand H-bonding in these copper complexes and that these outer sphere interactions can significantly influence structure and stability.
- Published
- 2015
- Full Text
- View/download PDF
42. Single-Crystal to Single-Crystal Mechanical Contraction of Metal-Organic Frameworks through Stereoselective Postsynthetic Bromination.
- Author
-
Marshall RJ, Griffin SL, Wilson C, and Forgan RS
- Subjects
- Crystallization, Halogenation, Hydrocarbons, Brominated chemistry, Molecular Structure, Stereoisomerism, Hafnium chemistry, Hydrocarbons, Brominated chemical synthesis, Organometallic Compounds chemistry
- Abstract
The properties of metal-organic frameworks (MOFs) can be tuned by postsynthetic modification (PSM) to introduce specific functionalities after their synthesis. Typically, PSM is carried out on pendant functional groups or through metal/ligand exchange, preserving the structure of the MOF. We report herein the bromination of integral alkyne units in a pair of Zr(4+) and Hf(4+) MOFs, which proceeds stereoselectively in a single-crystal to single-crystal manner. The chemical and mechanical changes in the MOFs are extensively characterized, including the crystal structures of the postsynthetically brominated materials, which show a mechanical contraction of up to 3.7% in volume. The combination of stability and chemical reactivity in these MOFs leads to the possibility of tuning mechanical properties by chemical transformation while also opening up new routes to internal pore functionalization.
- Published
- 2015
- Full Text
- View/download PDF
43. The surface chemistry of metal-organic frameworks.
- Author
-
McGuire CV and Forgan RS
- Abstract
Metal-organic frameworks (MOFs) have received particular attention over the last 20 years as a result of their attractive properties offering potential applications in a number of areas. Typically, these characteristics are tuned by functionalisation of the bulk of the MOF material itself. This Feature Article focuses instead on modification of MOF particles at their surfaces only, which can also offer control over the bulk properties of the material. The differing surface modification techniques available to the synthetic chemist will be discussed, with a focus on the effect of surface modification of MOFs on their fundamental properties and application in adsorption, catalysis, drug delivery and other areas.
- Published
- 2015
- Full Text
- View/download PDF
44. 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up.
- Author
-
Kitson PJ, Marshall RJ, Long D, Forgan RS, and Cronin L
- Abstract
3D printing techniques allow the laboratory-scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high-throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale-up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase-pure samples of coordination polymers MIL-96 and HKUST-1, in yields comparable to synthesis in traditional apparatus., (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2014
- Full Text
- View/download PDF
45. Exploring the programmable assembly of a polyoxometalate-organic hybrid via metal ion coordination.
- Author
-
Yin P, Li T, Forgan RS, Lydon C, Zuo X, Zheng ZN, Lee B, Long D, Cronin L, and Liu T
- Abstract
The conformational flexibility and programmed assembly of a dumbbell-shaped polyoxometalate-organic hybrid molecule comprising two Dawson-type polyoxometalates linked by a 2,2'-bipyridine unit, which can be coordinate to metal ions, in this case of Zn(2+), are described. SAXS, UV/vis, and NMR spectroscopic techniques confirm that the hybrid molecules exist as the trans dumbbell in metal-ion-free solutions and can be reversibly transformed into the cis dumbbell through coordination upon the addition of ZnCl2 into a DMSO solution containing the hybrid. Subsequent addition of EDTA reverses the switching process by extracting the Zn(2+) cations from the hybrid. During the interchange process between trans and cis dumbbells, a further reorganization of the hybrid molecules occurs through bond rotation to minimize steric clashes between the polyoxometalate subunits, in order to stabilize the corresponding dumbbell conformation. The Zn(2+)-controlled conformational transformation of the hybrid can be further utilized to manipulate the hybrid's solvophobic interaction-driven self-assembly behavior in the metal-ion driven reversible formation of 140 nm sized vesicles, studied by laser light scattering techniques.
- Published
- 2013
- Full Text
- View/download PDF
46. Self-assembly of a [2]pseudorota[3]catenane in water.
- Author
-
Forgan RS, Gassensmith JJ, Cordes DB, Boyle MM, Hartlieb KJ, Friedman DC, Slawin AM, and Stoddart JF
- Subjects
- Models, Molecular, Anthracenes chemistry, Water chemistry
- Abstract
A donor-acceptor [3]catenane incorporating two cyclobis(paraquat-p-phenylene) rings linked together by a dinaphtho[50]crown-14 macrocycle possesses a π-electron-deficient pocket. Contrary to expectation, negligible binding of a hexaethylene glycol chain interrupted in its midriff by a π-electron-rich 1,5-dioxynaphthalene unit was observed in acetonitrile. However, a fortuitous solid-state superstructure of the expected 1:1 complex revealed its inability to embrace any stabilizing [C-H···O] interactions between the clearly unwelcome guest and the host reluctantly accommodating it. By contrast, in aqueous solution, the 1:1 complex becomes very stable thanks to the intervention of hydrophobic bonding.
- Published
- 2012
- Full Text
- View/download PDF
47. Mechanostereochemistry and the mechanical bond.
- Author
-
Barin G, Forgan RS, and Stoddart JF
- Abstract
The chemistry of mechanically interlocked molecules (MIMs), in which two or more covalently linked components are held together by mechanical bonds, has led to the coining of the term mechanostereochemistry to describe a new field of chemistry that embraces many aspects of MIMs, including their syntheses, properties, topologies where relevant and functions where operative. During the rapid development and emergence of the field, the synthesis of MIMs has witnessed the forsaking of the early and grossly inefficient statistical approaches for template-directed protocols, aided and abetted by molecular recognition processes and the tenets of self-assembly. The resounding success of these synthetic protocols, based on templation, has facilitated the design and construction of artificial molecular switches and machines, resulting more and more in the creation of integrated functional systems. This review highlights (i) the range of template-directed synthetic methods being used currently in the preparation of MIMs; (ii) the syntheses of topologically complex knots and links in the form of stable molecular compounds; and (iii) the incorporation of bistable MIMs into many different device settings associated with surfaces, nanoparticles and solid-state materials in response to the needs of particular applications that are perceived to be fair game for mechanostereochemistry.
- Published
- 2012
- Full Text
- View/download PDF
48. Stereochemistry of molecular figures-of-eight.
- Author
-
Boyle MM, Gassensmith JJ, Whalley AC, Forgan RS, Smaldone RA, Hartlieb KJ, Blackburn AK, Sauvage JP, and Stoddart JF
- Abstract
A trans isomer of a figure-of-eight (Fo8) compound was prepared from an electron-withdrawing cyclobis(paraquat-p-phenylene) derivative carrying trans-disposed azide functions between its two phenylene rings. Copper(I)-catalyzed azide-alkyne cycloadditions with a bispropargyl derivative of a polyether chain, interrupted in its midriff by an electron-donating 1,5-dioxynaphthalene unit acting as the template to organize the reactants prior to the onset of two click reactions, afforded the Fo8 compound with C(i) symmetry. Exactly the same chemistry is performed on the cis-bisazide of the tetracationic cyclophane to give a Fo8 compound with C(2) symmetry. Both of these Fo8 compounds exist as major and very minor conformational isomers in solution. The major conformation in the trans series, which has been characterized by X-ray crystallography, adopts a geometry which maximizes its C-H···O interactions, while maintaining its π···π stacking and C-H···π interactions. Ab initio calculations at the M06L level support the conformational assignments to the major and minor isomers in the trans series. Dynamic (1)H NMR spectroscopy, supported by 2D (1)H NMR experiments, indicates that the major and minor isomers in both the cis and trans series equilibrate in solution on the (1)H NMR timescale rapidly above and slowly below room temperature., (Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2012
- Full Text
- View/download PDF
49. Polyporous metal-coordination frameworks.
- Author
-
Gassensmith JJ, Smaldone RA, Forgan RS, Wilmer CE, Cordes DB, Botros YY, Slawin AM, Snurr RQ, and Stoddart JF
- Subjects
- Crystallography, X-Ray, Molecular Conformation, Polymers chemical synthesis, Biological Products chemistry, Models, Molecular, Polymers chemistry, Rubidium chemistry, alpha-Cyclodextrins chemistry
- Abstract
Starting from a chiral building block--α-cyclodextrin--and rubidium salts, the crystallization of a complex of chiral helices, which constitute a "green" porous coordination polymer, has been realized. Cyclodextrin molecules coordinated by rubidium ions form porous, infinitely long left-handed helical channels, interdigitated with each other. A theoretical examination of the potential of this new material to act as a medium for chiral separation is presented.
- Published
- 2012
- Full Text
- View/download PDF
50. Nanoporous carbohydrate metal-organic frameworks.
- Author
-
Forgan RS, Smaldone RA, Gassensmith JJ, Furukawa H, Cordes DB, Li Q, Wilmer CE, Botros YY, Snurr RQ, Slawin AM, and Stoddart JF
- Subjects
- Adsorption, Gases chemistry, Models, Molecular, Molecular Conformation, Porosity, Potassium chemistry, Organometallic Compounds chemistry, gamma-Cyclodextrins chemistry
- Abstract
The binding of alkali and alkaline earth metal cations by macrocyclic and diazamacrobicyclic polyethers, composed of ordered arrays of hard oxygen (and nitrogen) donor atoms, underpinned the development of host-guest supramolecular chemistry in the 1970s and 1980s. The arrangement of -OCCO- and -OCCN- chelating units in these preorganized receptors, including, but not limited to, crown ethers and cryptands, is responsible for the very high binding constants observed for their complexes with Group IA and IIA cations. The cyclodextrins (CDs), cyclic oligosaccharides derived microbiologically from starch, also display this -OCCO- bidentate motif on both their primary and secondary faces. The self-assembly, in aqueous alcohol, of infinite networks of extended structures, which have been termed CD-MOFs, wherein γ-cyclodextrin (γ-CD) is linked by coordination to Group IA and IIA metal cations to form metal-organic frameworks (MOFs), is reported. CD-MOF-1 and CD-MOF-2, prepared on the gram-scale from KOH and RbOH, respectively, form body-centered cubic arrangements of (γ-CD)(6) cubes linked by eight-coordinate alkali metal cations. These cubic CD-MOFs are (i) stable to the removal of solvents, (ii) permanently porous, with surface areas of ~1200 m(2) g(-1), and (iii) capable of storing gases and small molecules within their pores. The fact that the -OCCO- moieties of γ-CD are not prearranged in a manner conducive to encapsulating single metal cations has led to our isolating other infinite frameworks, with different topologies, from salts of Na(+), Cs(+), and Sr(2+). This lack of preorganization is expressed emphatically in the case of Cs(+), where two polymorphs assemble under identical conditions. CD-MOF-3 has the cubic topology observed for CD-MOFs 1 and 2, while CD-MOF-4 displays a channel structure wherein γ-CD tori are perfectly stacked in one dimension in a manner reminiscent of the structures of some γ-CD solvates, but with added crystal stability imparted by metal-ion coordination. These new MOFs demonstrate that the CDs can indeed function as ligands for alkali and alkaline earth metal cations in a manner similar to that found with crown ethers. These inexpensive, green, nanoporous materials exhibit absorption properties which make them realistic candidates for commercial development, not least of all because edible derivatives, fit for human consumption, can be prepared entirely from food-grade ingredients., (© 2011 American Chemical Society)
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.