120 results on '"Bruno Sixou"'
Search Results
2. Synergistic PET/MR Reconstruction with VAE Constraint.
- Author
-
Valentin Gautier, Claude Comtat, Florent Sureau, Alexandre Bousse, Voichita Maxim, and Bruno Sixou
- Published
- 2024
3. POD method for acceleration of blood flow reconstruction in a vessel with contrast enhanced X-ray CT.
- Author
-
Shusong Huang, Monica Sigovan, and Bruno Sixou
- Published
- 2023
- Full Text
- View/download PDF
4. Efficiency of TV-regularized algorithms in computed tomography with Poisson-Gaussian noise.
- Author
-
Théo Leuliet, Louise Friot-Giroux, Walid Baaziz, élie Bretin, Ovidiu Ersen, Françoise Peyrin, Bruno Sixou, and Voichita Maxim
- Published
- 2020
- Full Text
- View/download PDF
5. Towards the optimization of ballistics in proton therapy using genetic algorithms: implementation issues.
- Author
-
François Smekens, Nicolas Freud, Bruno Sixou, Guillaume Beslon, and Jean-Michel Létang
- Published
- 2022
- Full Text
- View/download PDF
6. Variable length genetic algorithm with continuous parameters optimization of beam layout in proton therapy.
- Author
-
François Smekens, Nicolas Freud, Bruno Sixou, Guillaume Beslon, and Jean-Michel Létang
- Published
- 2022
- Full Text
- View/download PDF
7. A constrained Gauss-Newton algorithm for material decomposition in spectral computed tomography.
- Author
-
Tom Hohweiller, Nicolas Ducros, Françoise Peyrin, and Bruno Sixou
- Published
- 2018
- Full Text
- View/download PDF
8. An ADMM Algorithm for Constrained Material Decomposition in Spectral CT.
- Author
-
Tom Hohweiller, Nicolas Ducros, Françoise Peyrin, and Bruno Sixou
- Published
- 2018
- Full Text
- View/download PDF
9. Nonconvex Mixed TV/Cahn-Hilliard Functional for Super-Resolution/Segmentation of 3D Trabecular Bone Images.
- Author
-
Yufei Li, Bruno Sixou, and Françoise Peyrin
- Published
- 2019
- Full Text
- View/download PDF
10. Super-resolution/segmentation of 3D trabecular bone images with total variation and nonconvex Cahn-Hilliard functional.
- Author
-
Yufei Li, Bruno Sixou, Andrew Burghardt, and Françoise Peyrin
- Published
- 2017
- Full Text
- View/download PDF
11. Estimation of the blurring kernel in experimental HR-pQCT images based on mutual information.
- Author
-
Y. Li, Bruno Sixou, and Françoise Peyrin
- Published
- 2017
- Full Text
- View/download PDF
12. Multi-level tomography reconstructions with level-set and TV regularization methods.
- Author
-
Lin Wang 0021, Bruno Sixou, and Françoise Peyrin
- Published
- 2016
- Full Text
- View/download PDF
13. Super-resolution/segmentation of 2D trabecular bone images by a Mumford-Shah approach and comparison to total variation.
- Author
-
Y. Li, Alina Toma, Bruno Sixou, and Françoise Peyrin
- Published
- 2016
- Full Text
- View/download PDF
14. Filtered stochastic optimization for binary tomography.
- Author
-
Lin Wang 0021, Bruno Sixou, and Françoise Peyrin
- Published
- 2015
- Full Text
- View/download PDF
15. Semi-blind joint super-resolution/segmentation of 3D trabecular bone images by a TV box approach.
- Author
-
Françoise Peyrin, Alina Toma, Bruno Sixou, Loïc Denis, Andrew Burghardt, and Jean-Baptiste Pialat
- Published
- 2015
- Full Text
- View/download PDF
16. Deep learning methods for blood flow reconstruction in a vessel with contrast enhanced x‐ray computed tomography.
- Author
-
Shusong, Huang, Monica, Sigovan, and Bruno, Sixou
- Subjects
COMPUTED tomography ,DEEP learning ,PROPER orthogonal decomposition ,BLOOD flow ,INVERSE problems ,PARTIAL differential equations ,BLOOD vessels - Abstract
The reconstruction of blood velocity in a vessel from contrast enhanced x‐ray computed tomography projections is a complex inverse problem. It can be formulated as reconstruction problem with a partial differential equation constraint. A solution can be estimated with the a variational adjoint method and proper orthogonal decomposition (POD) basis. In this work, we investigate new inversion approaches based on PODs coupled with deep learning methods. The effectiveness of the reconstruction methods is shown with simulated realistic stationary blood flows in a vessel. The methods outperform the reduced adjoint method and show large speed‐up at the online stage. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
17. Higher order total variation super-resolution from a single trabecular bone image.
- Author
-
Alina Toma, Bruno Sixou, Loïc Denis, Jean-Baptiste Pialat, and Françoise Peyrin
- Published
- 2014
- Full Text
- View/download PDF
18. Total variation super-resolution for 3D trabecular bone micro-structure segmentation.
- Author
-
Alina Toma, Loïc Denis, Bruno Sixou, Jean-Baptiste Pialat, and Françoise Peyrin
- Published
- 2014
19. Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion.
- Author
-
Lin Wang 0021, Bruno Sixou, and Françoise Peyrin
- Published
- 2014
20. Binary tomography reconstructions of bone microstructure from few projections with stochastic level-set methods.
- Author
-
Lin Wang 0021, Bruno Sixou, and Françoise Peyrin
- Published
- 2014
- Full Text
- View/download PDF
21. Bone microstructure reconstructions from few projections with level-set regularization.
- Author
-
Bruno Sixou, Lin Wang 0021, and Françoise Peyrin
- Published
- 2013
- Full Text
- View/download PDF
22. Level set regularization for nonlinear absorption and phase retrieval in X-ray phase contrast tomography.
- Author
-
Bruno Sixou, Valentina Davidoiu, Max Langer, and Françoise Peyrin
- Published
- 2013
- Full Text
- View/download PDF
23. Non-linear iterative phase retrieval based on Frechet derivative and projection operators.
- Author
-
Valentina Davidoiu, Bruno Sixou, Max Langer, and Françoise Peyrin
- Published
- 2012
- Full Text
- View/download PDF
24. Reconstruction of bone microstructure from few projections with convex-concave and non local regularization.
- Author
-
Bruno Sixou and Françoise Peyrin
- Published
- 2012
- Full Text
- View/download PDF
25. Non-linear phase retrieval combined with iterative thresholding in wavelet coordinates.
- Author
-
Valentina Davidoiu, Bruno Sixou, Max Langer, and Françoise Peyrin
- Published
- 2012
26. Optimal inverse treatment planning by stochastic continuation.
- Author
-
Marc C. Robini, François Smekens, and Bruno Sixou
- Published
- 2011
- Full Text
- View/download PDF
27. Non linear phase retrieval from fresnel diffraction patterns using the frechet derivative.
- Author
-
Bruno Sixou, Valentina Davidoiu, Max Langer, and Françoise Peyrin
- Published
- 2011
- Full Text
- View/download PDF
28. Binary Tomography Reconstructions With Stochastic Level-Set Methods.
- Author
-
Lin Wang 0021, Bruno Sixou, and Françoise Peyrin
- Published
- 2015
- Full Text
- View/download PDF
29. Convergence of regularization methods with filter functions for a regularization parameter chosen with GSURE and mildly ill-posed inverse problems.
- Author
-
Bruno Sixou
- Published
- 2020
- Full Text
- View/download PDF
30. Nonlinear Phase Retrieval Using Projection Operator and Iterative Wavelet Thresholding.
- Author
-
Valentina Davidoiu, Bruno Sixou, Max Langer, and Françoise Peyrin
- Published
- 2012
- Full Text
- View/download PDF
31. Nonlinear primal dual-method phase retrieval for X-ray in-line phase contrast imaging
- Author
-
Kannara Mom, Max Langer, and Bruno Sixou
- Published
- 2022
- Full Text
- View/download PDF
32. Mixed scale dense convolutional networks for x-ray phase contrast imaging
- Author
-
Kannara Mom, Bruno Sixou, Max Langer, Rayet, Béatrice, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Translational Innovation in Medicine and Complexity / Recherche Translationnelle et Innovation en Médecine et Complexité - UMR 5525 (TIMC ), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Fresnel diffraction ,Phase contrast imaging ,Medical imaging ,Electrical and Electronic Engineering ,Coherence ,X ray imaging ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Engineering (miscellaneous) ,Atomic and Molecular Physics, and Optics ,Phase retrieval ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; X-ray in-line phase contrast imaging relies on the measurement of Fresnel diffraction intensity patterns due to the phase shift and the attenuation induced by the object. The recovery of phase and attenuation from one or several diffraction patterns is a nonlinear ill-posed inverse problem. In this work, we propose supervised learning approaches using mixed scale dense (MS-D) convolutional neural networks to simultaneously retrieve the phase and the attenuation from x-ray phase contrast images. This network architecture uses dilated convolutions to capture features at different image scales and densely connects all feature maps. The long range information in images becomes quickly available, and greater receptive field size can be obtained without losing resolution. This network architecture seems to account for the effect of the Fresnel operator very efficiently. We train the networks using simulated data of objects consisting of either homogeneous components, characterized by a fixed ratio of the induced refractive phase shifts and attenuation, or heterogeneous components, consisting of various materials. We also train the networks in the image domain by applying a simple initial reconstruction using the adjoint of the Fréchet derivative. We compare the results obtained with the MS-D network to reconstructions using U-Net, another popular network architecture, as well as to reconstructions using the contrast transfer function method, a direct phase and attenuation retrieval method based on linearization of the direct problem. The networks are evaluated using simulated noisy data as well as images acquired at NanoMAX (MAX IV, Lund, Sweden). In all cases, large improvements of the reconstruction errors are obtained on simulated data compared to the linearized method. Moreover, on experimental data, the networks improve the reconstruction quantitatively, improving the low-frequency behavior and the resolution.
- Published
- 2022
- Full Text
- View/download PDF
33. Impact of the training loss in deep learning–based CT reconstruction of bone microarchitecture
- Author
-
Théo, Leuliet, Voichiţa, Maxim, Françoise, Peyrin, Bruno, Sixou, Rayet, Béatrice, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,bone structure ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,tomographic reconstruction ,deep learning ,training loss ,General Medicine ,Bone and Bones ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,Bone Density ,Image Processing, Computer-Assisted ,low-dose micro-CT ,Neural Networks, Computer ,Tomography, X-Ray Computed ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; PurposeComputed tomography (CT) is a technique of choice to image bone structure at different scales. Methods to enhance the quality of degraded reconstructions obtained from low-dose CT data have shown impressive results recently, especially in the realm of supervised deep learning. As the choice of the loss function affects the reconstruction quality, it is necessary to focus on the way neural networks evaluate the correspondence between predicted and target images during the training stage. This is even more true in the case of bone microarchitecture imaging at high spatial resolution where both the quantitative analysis of bone mineral density (BMD) and bone microstructure is essential for assessing diseases such as osteoporosis. Our aim is thus to evaluate the quality of reconstruction on key metrics for diagnosis depending on the loss function that has been used for training the neural network.MethodsWe compare and analyze volumes that are reconstructed with neural networks trained with pixelwise, structural, and adversarial loss functions or with a combination of them. We perform realistic simulations of various low-dose acquisitions of bone microarchitecture. Our comparative study is performed with metrics that have an interest regarding the diagnosis of bone diseases. We therefore focus on bone-specific metrics such as bone volume and the total volume (BV and TV), resolution, connectivity assessed with the Euler number, and quantitative analysis of BMD to evaluate the quality of reconstruction obtained with networks trained with the different loss functions.ResultsWe find that using L1norm as the pixelwise loss is the best choice compared to L2 or no pixelwise loss since it improves resolution without deteriorating other metrics. Visual Geometry Group (VGG) perceptual loss, especially when combined with an adversarial loss, allows to better retrieve topological and morphological parameters of bone microarchitecture compared to Structural SIMilarity (SSIM) index. This however leads to a decreased resolution performance. The adversarial loss enhances the reconstruction performance in terms of BMD distribution accuracy.ConclusionsIn order to retrieve the quantitative and structural characteristics of bone microarchitecture that are essential for postreconstruction diagnosis, our results suggest to use L1norm as part of the loss function. Then, trade-offs should be made depending on the application: VGG perceptual loss improves accuracy in terms of connectivity at the cost of a deteriorated resolution, and adversarial losses help better retrieve BMD distribution while significantly increasing the training time.
- Published
- 2022
- Full Text
- View/download PDF
34. Deep Gauss–Newton for phase retrieval
- Author
-
Kannara Mom, Max Langer, and Bruno Sixou
- Subjects
Atomic and Molecular Physics, and Optics - Abstract
We propose the deep Gauss–Newton (DGN) algorithm. The DGN allows one to take into account the knowledge of the forward model in a deep neural network by unrolling a Gauss–Newton optimization method. No regularization or step size needs to be chosen; they are learned through convolutional neural networks. The proposed algorithm does not require an initial reconstruction and is able to retrieve simultaneously the phase and absorption from a single-distance diffraction pattern. The DGN method was applied to both simulated and experimental data and permitted large improvements of the reconstruction error and of the resolution compared with a state-of-the-art iterative method and another neural-network-based reconstruction algorithm.
- Published
- 2023
- Full Text
- View/download PDF
35. Investigation of Semi-Coupled Dictionary Learning in 3-D Super Resolution HR-pQCT Imaging
- Author
-
Bruno Sixou, Y. Li, Françoise Peyrin, Andrew Burghard, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Radiology and Biomedical Imaging [San Francisco], University of California [San Francisco] (UCSF), and University of California-University of California
- Subjects
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Computer science ,030209 endocrinology & metabolism ,Topology (electrical circuits) ,super resolution ,Regularization (mathematics) ,03 medical and health sciences ,Bone volume fraction ,0302 clinical medicine ,Radiology, Nuclear Medicine and imaging ,Instrumentation ,Image resolution ,bone micro architecture ,030304 developmental biology ,0303 health sciences ,business.industry ,Pattern recognition ,Superresolution ,Atomic and Molecular Physics, and Optics ,Data set ,Artificial intelligence ,dictionary learning ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Dictionary learning ,Bone structure ,CT images - Abstract
International audience; High Resolution peripheral Quantitative CT (HR-pQCT) permits to investigate bone micro-architecture in vivo. While it is a considerable progress over standard CT for this specific application, the spatial resolution remains so far limited for the investigation of bone topology. In this work, we investigate super resolution techniques to improve 3D HR-pQCT images via semi-coupled dictionary learning based on the knowledge of high resolution micro-CT images. We propose a method to select the number of atoms and study the impact of patch sizes. To handle the anisotropy of the 3D bone structure, we propose a 2.5D strategy learning low and high resolution dictionaries in a semi-coupled way on the three different directions. The results show that this strategy is superior to the application of the method in 2D. The bone volume fraction is successfully recovered and the estimation of the connectivity is improved in most test samples. The images have a better quality compared with previously studied methods based on Total Variation (TV) regularization or a combination of TV and a double-well potential. In the future, we expect to further evaluate the method on a larger data set.
- Published
- 2019
- Full Text
- View/download PDF
36. Nonlinear primal–dual algorithm for the phase and absorption retrieval from a single phase contrast image
- Author
-
Kannara Mom, Max Langer, and Bruno Sixou
- Subjects
Atomic and Molecular Physics, and Optics - Abstract
We propose a nonlinear primal–dual algorithm for the retrieval of phase shift and absorption from a single x ray in-line phase contrast, or Fresnel diffraction, image. The algorithm permits us to regularize phase and absorption separately. We demonstrate that taking into account the nonlinearity in the reconstruction improves reconstruction compared with linear methods. We also demonstrate that choosing different regularizers for absorption and phase can improve the reconstructions. The use of the total variation and its generalization in a primal–dual approach allows us to exploit the sparsity of the investigated sample. On both simulated and real datasets, the proposed nonlinear primal–dual hybrid gradient (NL-PDHG) method yields reconstructions with considerably fewer artifacts and improved the normalized mean squared error compared with its linearized version.
- Published
- 2022
- Full Text
- View/download PDF
37. Adaptative regularization parameter for poisson noise with a bilevel approach: application to spectral computerized tomography
- Author
-
Bruno Sixou, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Inverse problems ,Kullback–Leibler divergence ,Computer science ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Applied Mathematics ,X-ray imaging ,General Engineering ,Shot noise ,regularization parameter ,010103 numerical & computational mathematics ,Inverse problem ,01 natural sciences ,Kullback-Leibler ,Computer Science Applications ,010101 applied mathematics ,Nonlinear system ,Regularization (physics) ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,Poisson noise ,Applied mathematics ,Tomography ,0101 mathematics - Abstract
International audience; In this paper, we present a method of choice of an adaptative regularization parameter for data corrupted by Poisson noise based on a bilevel approach. The forward operator considered is nonlinear. The existence and unicity of the smoothed lower level problem, the differentiability properties of the constraint, and the adjoint method used to calculate the gradient of the reduced functional are studied in detail. The variance of the KL functional for Poisson noise is also investigated. The method is applied to the spectral CT inverse problem. Better reconstruction results are obtained with the bilevel method of choice than with a scalar regularization parameter.
- Published
- 2021
- Full Text
- View/download PDF
38. A review of the deep learning methods for medical images super resolution problems
- Author
-
Y. Li, Bruno Sixou, Françoise Peyrin, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer science ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,0206 medical engineering ,Biomedical Engineering ,Biophysics ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,02 engineering and technology ,030218 nuclear medicine & medical imaging ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,03 medical and health sciences ,0302 clinical medicine ,Medical imaging ,Image acquisition ,Image resolution ,business.industry ,Deep learning ,020601 biomedical engineering ,Superresolution ,Super resolution ,Computer engineering ,Artificial intelligence ,Focus (optics) ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; Super resolution problems are widely discussed in medical imaging. Spatial resolution of medical images are not sufficient due to the constraints such as image acquisition time, low irradiation dose or hardware limits. To address these problems, different super resolution methods have been proposed, such as optimization or learning-based approaches. Recently, deep learning methods become a thriving technology and are developing at an exponential speed. We think it is necessary to write a review to present the current situation of deep learning in medical imaging super resolution. In this paper, we first briefly introduce deep learning methods, then present a number of important deep learning approaches to solve super resolution problems, different architectures as well as up-sampling operations will be introduced. Afterwards, we focus on the applications of deep learning methods in medical imaging super resolution problems, the challenges to overcome will be presented as well
- Published
- 2021
- Full Text
- View/download PDF
39. Efficiency of TV-regularized algorithms in computed tomography with Poisson-Gaussian noise
- Author
-
Ovidiu Ersen, Elie Bretin, Walid Baaziz, Françoise Peyrin, Voichita Maxim, Louise Friot--Giroux, Theo Leuliet, Bruno Sixou, Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), and Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Signal processing ,Computer science ,Gaussian ,Resolution (electron density) ,Physics::Medical Physics ,020206 networking & telecommunications ,02 engineering and technology ,Poisson distribution ,symbols.namesake ,Noise ,Gaussian noise ,0202 electrical engineering, electronic engineering, information engineering ,symbols ,020201 artificial intelligence & image processing ,Algorithm ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
Regularized algorithms are the state-of-the-art in computed tomography, but they are also very demanding in computer resources. In this work we test two data-fidelity formulations and some associated algorithms for the resolution of the Total-Variation regularized tomographic problem. We compare their computational cost for a mixture of Poisson and Gaussian noises. We show that a recently proposed MAP-EM algorithm outperforms the TV-regularized SIRT and the Chambolle-Pock algorithms on synthetic data for the considered noise. We illustrate this result on experimental data from transmission electron microscopy.
- Published
- 2021
- Full Text
- View/download PDF
40. Contrast enhanced tomographic reconstruction of vascular blood flow based on the Navier-Stokes equation
- Author
-
Monica Sigovan, Bruno Sixou, Loic Boussel, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Modeling & analysis for medical imaging and Diagnosis (MYRIAD), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Inverse problems ,Work (thermodynamics) ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,media_common.quotation_subject ,adjoint methods ,Physics::Medical Physics ,Inverse ,010103 numerical & computational mathematics ,01 natural sciences ,Navier-Stokes equation ,Perpendicular ,Contrast (vision) ,Navier stokes ,0101 mathematics ,media_common ,Physics ,Tomographic reconstruction ,Applied Mathematics ,Mathematical analysis ,General Engineering ,Blood flow ,Inverse problem ,eye diseases ,Computer Science Applications ,010101 applied mathematics ,sense organs ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; In this work, we study the reconstruction of blood velocity with contrast enhanced computed tomography with tomographic projections perpendicular to the main flow field direction. The inverse problem is regularized with a convection-diffusion partial differential equation and with the Navier-Stokes equation. The velocity field is reconstructed together with the density field with a first-order adjoint method. The method is validated on a simple phantom. The addition of a physical constraint with a partial differential equation for the velocity field improves the reconstruction results.
- Published
- 2020
- Full Text
- View/download PDF
41. Kullback-Leibler residual and regularization for inverse problems with noisy data and noisy operator
- Author
-
Cyril Mory and Bruno Sixou
- Subjects
Control and Optimization ,Kullback–Leibler divergence ,02 engineering and technology ,Inverse problem ,Residual ,01 natural sciences ,Regularization (mathematics) ,010101 applied mathematics ,ComputingMethodologies_PATTERNRECOGNITION ,Modeling and Simulation ,0202 electrical engineering, electronic engineering, information engineering ,Discrete Mathematics and Combinatorics ,Applied mathematics ,020201 artificial intelligence & image processing ,Pharmacology (medical) ,0101 mathematics ,Approximate solution ,Noisy data ,Analysis ,Mathematics - Abstract
We study the properties of a regularization method for inverse problems with joint Kullback-Leibler data term and regularization when the data and the operator are corrupted by some noise. We show the convergence of the method and we obtain convergence rates for the approximate solution of the inverse problem and for the operator when it is characterized by some kernel, under the assumption that some source conditions are satisfied. Numerical results showing the effect of the noise levels on the reconstructed solution are provided for Spectral Computerized Tomography.
- Published
- 2019
- Full Text
- View/download PDF
42. Morozov principle for Kullback-Leibler residual term and Poisson noise
- Author
-
Tom Hohweiller, Bruno Sixou, Nicolas Ducros, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Inverse problems ,Morozov principle ,Control and Optimization ,Kullback–Leibler divergence ,Kullback-Leibler divergence ,Shot noise ,Inverse problem ,Residual ,01 natural sciences ,Regularization (mathematics) ,Statistics::Computation ,030218 nuclear medicine & medical imaging ,010101 applied mathematics ,03 medical and health sciences ,0302 clinical medicine ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Modeling and Simulation ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Discrete Mathematics and Combinatorics ,Applied mathematics ,A priori and a posteriori ,Pharmacology (medical) ,0101 mathematics ,Analysis ,Mathematics - Abstract
International audience; We study the properties of a regularization method for inverse problems corrupted by Poisson noise with Kullback-Leibler divergence as data term. The regularization parameter is chosen according to a Morozov type principle. We show that this method of choice of the parameter is well-defined. This a posteriori choice leads to a convergent regularization method. Convergences rates are obtained for this a posteriori choice of the regularization parameter when some source condition is satisfied.
- Published
- 2018
- Full Text
- View/download PDF
43. Tomography Reconstructions With Stochastic Level-Set Methods
- Author
-
Françoise Peyrin, Bruno Sixou, and Lin Wang
- Subjects
Level set (data structures) ,Computer science ,Tomography ,Algorithm - Published
- 2019
- Full Text
- View/download PDF
44. Deterministic versus stochastic level-set regularization in nonlinear phase contrast tomography
- Author
-
Bruno Sixou
- Subjects
Phase contrast tomography ,Applied Mathematics ,Mathematical analysis ,General Engineering ,Fréchet derivative ,Perturbation (astronomy) ,Geometry ,Iterative reconstruction ,Inverse problem ,01 natural sciences ,030218 nuclear medicine & medical imaging ,Computer Science Applications ,010101 applied mathematics ,03 medical and health sciences ,Nonlinear system ,0302 clinical medicine ,Piecewise ,0101 mathematics ,Refractive index ,Mathematics - Abstract
A new nonlinear level-set regularization method to reconstruct the complex refractive index distribution with in-line phase contrast tomography measurements is presented under the assumption that the index is piecewise constant. The nonlinear iterative approach is based on the Frechet derivative of the intensity recorded at a single propagation distance and for several projection angles. The algorithm is successfully applied to a multi-material object for several noise levels. Better reconstruction results are achieved with a stochastic perturbation of the level-set function. This evolution corresponds to a stochastic evolution of the shape of the reconstructed regions. The reconstruction errors can be further decreased with topological derivatives. The different algorithms are tested on various multi-material objects.
- Published
- 2016
- Full Text
- View/download PDF
45. Binary tomography reconstruction from few projections with Total Variation regularization for bone microstructure studies
- Author
-
Lihui Wang, Françoise Peyrin, Simon Rit, Bruno Sixou, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and European Synchrotron Radiation Facility (ESRF)
- Subjects
Mathematical optimization ,Computer science ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,02 engineering and technology ,Regularization (mathematics) ,Bone and Bones ,Labex PRIMES ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Image Processing, Computer-Assisted ,categₛt2i ,0202 electrical engineering, electronic engineering, information engineering ,Humans ,Computer Simulation ,Imagerie tomographique et thérapie par rayonnement ,Radiology, Nuclear Medicine and imaging ,Electrical and Electronic Engineering ,Instrumentation ,Radiation ,inverse problems ,Small number ,Binary image ,X-ray imaging ,Regular polygon ,Inverse problem ,Total variation denoising ,Condensed Matter Physics ,reseau_international ,020201 artificial intelligence & image processing ,Minification ,Tomography, X-Ray Computed ,discrete tomography ,Discrete tomography ,Algorithm ,Algorithms - Abstract
International audience; Discrete tomography refers to a class of reconstruction methods adapted to discrete-valued images. Many different approaches have been investigated to address the binary case, when a two-phase object is considered. This reconstruction problem is very important in medical or material applications where it is crucial to reduce the number of projections. In this paper, we address the problem of binary image reconstruction for X-ray CT imaging from a small number of projections. We propose a TV (Total Variation) regularization approach and compare the results obtained with or without an additional box convex constraint. The schemes are applied to a simple disk image and to more complex bone cross-sections for various noise levels. The minimization of the regularization functional is performed with the state-of-the-art ADMM (Alternate Direction Minimization Method) algorithm. The methods perform equally well on a simple disk image. The additional box convex constraints improves the reconstruction results for complex structures with fine details.
- Published
- 2016
- Full Text
- View/download PDF
46. An ADMM Algorithm for Constrained Material Decomposition in Spectral CT
- Author
-
Nicolas Ducros, Françoise Peyrin, Tom Hohweiller, Bruno Sixou, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and European Synchrotron Radiation Facility (ESRF)
- Subjects
Computer science ,spectral computed tomography ,Detector ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,material decomposition ,nonlinear inverse problem ,02 engineering and technology ,Iterative reconstruction ,Sample (graphics) ,Imaging phantom ,030218 nuclear medicine & medical imaging ,Alternating direction method of multipliers ,03 medical and health sciences ,0302 clinical medicine ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,[SDV.IB]Life Sciences [q-bio]/Bioengineering ,Tomography ,Projection (set theory) ,Algorithm ,Dykstra's projection algorithm - Abstract
International audience; Thanks to photon-counting detectors, spectral computerized tomography records energy-resolved data from which the chemical composition of a sample can be recovered. This problem, referred to as material decomposition, can be formulated as a nonlinear inverse problem. In previous work, we proposed to decompose the projection images using a regularized Gauss-Newton algorithm. To reduce further the ill-posedness of the problem, we propose here to consider equality and inequality constraints that are based on physical priors. In particular, we impose the positivity of the solutions as well the total mass in each projection image. In practice, we first decompose the projection images for each projection angle independently. Then, we reconstruct the sample slices from the decomposed projection images using a standard filtered-back projection algorithm. The constrained material decomposition problem is solved by the alternating direction method of multipliers (ADMM). We compare the proposed ADMM algorithm to the unconstrained Gauss-Newton algorithm in a numerical thorax phantom. Including constraints reduces the cross-talk between materials in both the decomposed projections and the reconstructed slices.
- Published
- 2018
47. Comparison of five one-step reconstruction algorithms for spectral CT
- Author
-
Salim Si-Mohamed, Bruno Sixou, Simon Rit, Cyril Mory, Loic Boussel, 4 - Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ), Service de Radiologie et IRM [CHU Lyon], Hospices Civils de Lyon ( HCL ), This work was performed within the framework of the EU’s H2020 research and innovation program under the grant agreement No. 633937, the SIRIC LYric Grant INCa-DGOS-4664, and the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program 'Investissements d’Avenir' (ANR-11-IDEX-0007) operated by the ANR., ANR-11-IDEX-0007-02/11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation ( 2011 ), ANR-11-IDEX-0007-02/11-IDEX-0007,Avenir L.S.E.,Avenir L.S.E. ( 2011 ), Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Hospices Civils de Lyon (HCL), Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales (MOTIVATE), ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), ANR-11-IDEX-0007,Avenir L.S.E.,PROJET AVENIR LYON SAINT-ETIENNE(2012), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Photons ,Tomographic reconstruction ,Radiological and Ultrasound Technology ,Phantoms, Imaging ,Computer science ,Bayes Theorem ,[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing ,Photon counting ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Quadratic equation ,030220 oncology & carcinogenesis ,Image Processing, Computer-Assisted ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,[ SPI ] Engineering Sciences [physics] ,Humans ,Radiology, Nuclear Medicine and imaging ,Tomography, X-Ray Computed ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Algorithm ,Algorithms - Abstract
Over the last decade, dual-energy CT scanners have gone from prototypes to clinically available machines, and spectral photon counting CT scanners are following. They require a specific reconstruction process, consisting of two steps: material decomposition and tomographic reconstruction. Image-based methods perform reconstruction, then decomposition, while projection-based methods perform decomposition first, and then reconstruction. As an alternative, 'one-step inversion' methods have been proposed, which perform decomposition and reconstruction simultaneously. Unfortunately, one-step methods are typically slower than their two-step counterparts, and in most CT applications, reconstruction time is critical. This paper therefore proposes to compare the convergence speeds of five one-step algorithms. We adapted all these algorithms to solve the same problem: spectral photon-counting CT reconstruction from five energy bins, using a three materials decomposition basis and spatial regularization. The paper compares a Bayesian method which uses non-linear conjugate gradient for minimization (Cai et al 2013 Med. Phys. 40 111916-31), three methods based on quadratic surrogates (Long and Fessler 2014 IEEE Trans. Med. Imaging 33 1614-26, Weidinger et al 2016 Int. J. Biomed. Imaging 2016 1-15, Mechlem et al 2018 IEEE Trans. Med. Imaging 37 68-80), and a primal-dual method based on MOCCA, a modified Chambolle-Pock algorithm (Barber et al 2016 Phys. Med. Biol. 61 3784). Some of these methods have been accelerated by using μ-preconditioning, i.e. by performing all internal computations not with the actual materials the object is made of, but with carefully chosen linear combinations of those. In this paper, we also evaluated the impact of three different μ-preconditioners on convergence speed. Our experiments on simulated data revealed vast differences in the number of iterations required to reach a common image quality objective: Mechlem et al (2018 IEEE Trans. Med. Imaging 37 68-80) needed ten iterations, Cai et al (2013 Med. Phys. 40 111916-31), Long and Fessler (2014 IEEE Trans. Med. Imaging 33 1614-26) and Weidinger et al (2016 Int. J. Biomed. Imaging 2016 1-15) several hundreds, and Barber et al (2016 Phys. Med. Biol. 61 3784) several thousands. We also sum up other practical aspects, like memory footprint and the need to tune extra parameters.
- Published
- 2018
- Full Text
- View/download PDF
48. Contrast enhanced tomographic reconstruction of vasular blood flow with first order and second order adjoint methods
- Author
-
Bruno Sixou, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Inverse problems ,Tomographic reconstruction ,Computer science ,Applied Mathematics ,media_common.quotation_subject ,X-ray imaging ,Physics::Medical Physics ,Mathematical analysis ,Blood flow ,tomography ,First order ,030218 nuclear medicine & medical imaging ,optimal control ,03 medical and health sciences ,0302 clinical medicine ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Order (business) ,030220 oncology & carcinogenesis ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Contrast (vision) ,ComputingMilieux_MISCELLANEOUS ,media_common - Abstract
In this work, we study the reconstruction of blood velocity with contrast enhanced computed tomography with a tomographic projections perpendicular to the main flow field direction. The inverse problem is regularized with a convection-diffusion partial differential equation. The velocity field is reconstructed with first order and second order adjoint methods with a receding optimal control method and tested on simple phantoms.
- Published
- 2018
- Full Text
- View/download PDF
49. Nonconvex Mixed TV/Cahn–Hilliard Functional for Super-Resolution/Segmentation of 3D Trabecular Bone Images
- Author
-
Bruno Sixou, Y. Li, Françoise Peyrin, Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and European Synchrotron Radiation Facility (ESRF)
- Subjects
Statistics and Probability ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,02 engineering and technology ,Regularization (mathematics) ,Super-resolution/segmentation ,0202 electrical engineering, electronic engineering, information engineering ,Segmentation ,Image resolution ,Mathematics ,Ground truth ,Total variation ,Cahn–Hilliard ,Applied Mathematics ,Inverse problem ,Condensed Matter Physics ,Superresolution ,Trabecular bone ,Modeling and Simulation ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,3D CT image ,Nonconvex ,020201 artificial intelligence & image processing ,Geometry and Topology ,Computer Vision and Pattern Recognition ,Minification ,Nonsmooth ,Algorithm ,Bone micro-architecture - Abstract
In this work, we investigate an inverse problem approach to 3D super-resolution/segmentation for an application to the analysis of trabecular bone micro-architecture from in vivo 3D X-ray CT images. The problem is expressed as the minimization of a functional including a data term and a prior. We consider here a regularization term combining total variation (TV) and a double-well potential to enforce the quasi-binarity of the resulting image. Three different schemes to minimize this nonconvex functional are presented and compared. The methods are applied to experimental new high-resolution peripheral quantitative CT images (voxel size $$82\,\upmu \hbox {m}$$ ) and evaluated with respect to a micro-CT image at higher spatial resolution (voxel size $$41\,\upmu \hbox {m}$$ ) considered as a ground truth. Our results show that a combination of double-well functional and TV term improves the contrast and the quality of the restoration even if the connectivity may be degraded.
- Published
- 2018
50. A Kullback-Leibler approach for 3D reconstruction of spectral CT data corrupted by Poisson noise
- Author
-
Tom Hohweiller, Bruno Sixou, Nicolas Ducros, and Françoise Peyrin
- Subjects
Tomographic reconstruction ,Kullback–Leibler divergence ,Computer science ,3D reconstruction ,Shot noise ,Inverse problem ,Least squares ,Imaging phantom ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,symbols.namesake ,Noise ,0302 clinical medicine ,Gaussian noise ,030220 oncology & carcinogenesis ,symbols ,Projection (set theory) ,Algorithm - Abstract
While standard computed tomography (CT) data do not depend on energy, spectral computed tomography (SPCT) acquire energy-resolved data, which allows material decomposition of the object of interest. Decompo- sitions in the projection domain allow creating projection mass density (PMD) per materials. From decomposed projections, a tomographic reconstruction creates 3D material density volume. The decomposition is made pos- sible by minimizing a cost function. The variational approach is preferred since this is an ill-posed non-linear inverse problem. Moreover, noise plays a critical role when decomposing data. That is why in this paper, a new data fidelity term is used to take into account of the photonic noise. In this work two data fidelity terms were investigated: a weighted least squares (WLS) term, adapted to Gaussian noise, and the Kullback-Leibler distance (KL), adapted to Poisson noise. A regularized Gauss-Newton algorithm minimizes the cost function iteratively. Both methods decompose materials from a numerical phantom of a mouse. Soft tissues and bones are decomposed in the projection domain; then a tomographic reconstruction creates a 3D material density volume for each material. Comparing relative errors, KL is shown to outperform WLS for low photon counts, in 2D and 3D. This new method could be of particular interest when low-dose acquisitions are performed.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.