Back to Search Start Over

Comparison of five one-step reconstruction algorithms for spectral CT

Authors :
Salim Si-Mohamed
Bruno Sixou
Simon Rit
Cyril Mory
Loic Boussel
4 - Imagerie Tomographique et Radiothérapie
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS )
Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL )
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon )
Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL )
Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA )
Service de Radiologie et IRM [CHU Lyon]
Hospices Civils de Lyon ( HCL )
This work was performed within the framework of the EU’s H2020 research and innovation program under the grant agreement No. 633937, the SIRIC LYric Grant INCa-DGOS-4664, and the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program 'Investissements d’Avenir' (ANR-11-IDEX-0007) operated by the ANR.
ANR-11-IDEX-0007-02/11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation ( 2011 )
ANR-11-IDEX-0007-02/11-IDEX-0007,Avenir L.S.E.,Avenir L.S.E. ( 2011 )
Imagerie Tomographique et Radiothérapie
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Hospices Civils de Lyon (HCL)
Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales (MOTIVATE)
ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011)
ANR-11-IDEX-0007,Avenir L.S.E.,PROJET AVENIR LYON SAINT-ETIENNE(2012)
Université Claude Bernard Lyon 1 ( UCBL )
Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS )
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL)
Source :
Physics in Medicine & Biology, Physics in Medicine and Biology, Physics in Medicine and Biology, IOP Publishing, 2018, 63 (23), pp.235001. ⟨10.1088/1361-6560/aaeaf2⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Over the last decade, dual-energy CT scanners have gone from prototypes to clinically available machines, and spectral photon counting CT scanners are following. They require a specific reconstruction process, consisting of two steps: material decomposition and tomographic reconstruction. Image-based methods perform reconstruction, then decomposition, while projection-based methods perform decomposition first, and then reconstruction. As an alternative, 'one-step inversion' methods have been proposed, which perform decomposition and reconstruction simultaneously. Unfortunately, one-step methods are typically slower than their two-step counterparts, and in most CT applications, reconstruction time is critical. This paper therefore proposes to compare the convergence speeds of five one-step algorithms. We adapted all these algorithms to solve the same problem: spectral photon-counting CT reconstruction from five energy bins, using a three materials decomposition basis and spatial regularization. The paper compares a Bayesian method which uses non-linear conjugate gradient for minimization (Cai et al 2013 Med. Phys. 40 111916-31), three methods based on quadratic surrogates (Long and Fessler 2014 IEEE Trans. Med. Imaging 33 1614-26, Weidinger et al 2016 Int. J. Biomed. Imaging 2016 1-15, Mechlem et al 2018 IEEE Trans. Med. Imaging 37 68-80), and a primal-dual method based on MOCCA, a modified Chambolle-Pock algorithm (Barber et al 2016 Phys. Med. Biol. 61 3784). Some of these methods have been accelerated by using μ-preconditioning, i.e. by performing all internal computations not with the actual materials the object is made of, but with carefully chosen linear combinations of those. In this paper, we also evaluated the impact of three different μ-preconditioners on convergence speed. Our experiments on simulated data revealed vast differences in the number of iterations required to reach a common image quality objective: Mechlem et al (2018 IEEE Trans. Med. Imaging 37 68-80) needed ten iterations, Cai et al (2013 Med. Phys. 40 111916-31), Long and Fessler (2014 IEEE Trans. Med. Imaging 33 1614-26) and Weidinger et al (2016 Int. J. Biomed. Imaging 2016 1-15) several hundreds, and Barber et al (2016 Phys. Med. Biol. 61 3784) several thousands. We also sum up other practical aspects, like memory footprint and the need to tune extra parameters.

Details

Language :
English
ISSN :
00319155, 02665611, and 13616560
Database :
OpenAIRE
Journal :
Physics in Medicine & Biology, Physics in Medicine and Biology, Physics in Medicine and Biology, IOP Publishing, 2018, 63 (23), pp.235001. ⟨10.1088/1361-6560/aaeaf2⟩
Accession number :
edsair.doi.dedup.....9877cc382278b06f783ba9f06b610097
Full Text :
https://doi.org/10.1088/1361-6560/aaeaf2⟩