Back to Search Start Over

Nonconvex Mixed TV/Cahn–Hilliard Functional for Super-Resolution/Segmentation of 3D Trabecular Bone Images

Authors :
Bruno Sixou
Y. Li
Françoise Peyrin
Imagerie Tomographique et Radiothérapie
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
European Synchrotron Radiation Facility (ESRF)
Source :
Journal of Mathematical Imaging and Vision, Journal of Mathematical Imaging and Vision, Springer Verlag, 2018, pp.1-11
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

In this work, we investigate an inverse problem approach to 3D super-resolution/segmentation for an application to the analysis of trabecular bone micro-architecture from in vivo 3D X-ray CT images. The problem is expressed as the minimization of a functional including a data term and a prior. We consider here a regularization term combining total variation (TV) and a double-well potential to enforce the quasi-binarity of the resulting image. Three different schemes to minimize this nonconvex functional are presented and compared. The methods are applied to experimental new high-resolution peripheral quantitative CT images (voxel size $$82\,\upmu \hbox {m}$$ ) and evaluated with respect to a micro-CT image at higher spatial resolution (voxel size $$41\,\upmu \hbox {m}$$ ) considered as a ground truth. Our results show that a combination of double-well functional and TV term improves the contrast and the quality of the restoration even if the connectivity may be degraded.

Details

Language :
English
ISSN :
09249907 and 15737683
Database :
OpenAIRE
Journal :
Journal of Mathematical Imaging and Vision, Journal of Mathematical Imaging and Vision, Springer Verlag, 2018, pp.1-11
Accession number :
edsair.doi.dedup.....c3146589d82cecee5890577118f017f9