1. On the stability of totally upwind schemes for the hyperbolic initial boundary value problem
- Author
-
Boutin, Benjamin, Barbenchon, Pierre Le, Seguin, Nicolas, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut Agro Rennes Angers, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut Montpelliérain Alexander Grothendieck (IMAG), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), ANR-17-CE40-0025,Nabuco,Frontières numériques et couplages(2017), ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2), and Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut Agro Rennes Angers
- Subjects
Kreiss-Lopatinskii determinant ,GKS stability ,65M12, 65M06 ,GKS-stability ,finite-difference methods ,boundary conditions ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,inverse Lax-Wendroff ,Numerical Analysis (math.NA) ,Mathematics - Numerical Analysis ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; In this paper, we present a numerical strategy to check the strong stability (or GKS-stability) of one-step explicit totally upwind schemes in 1D with numerical boundary conditions. The underlying approximated continuous problem is the one-dimensional advection equation. The strong stability is studied using the Kreiss-Lopatinskii theory. We introduce a new tool, the intrinsic Kreiss-Lopatinskii determinant, which possesses remarkable regularity properties. By applying standard results of complex analysis, we are able to elate the strong stability of numerical schemes to the computation of a winding number, which is robust and cheap. The study is illustrated with the Beam-Warming scheme together with the simplified inverse Lax-Wendroff procedure at the boundary.
- Published
- 2023
- Full Text
- View/download PDF