Back to Search
Start Over
Asymptotic convergence rates of SWR methods for Schrödinger equations with an arbitrary number of subdomains
- Source :
- Multiscale Science and Engineering, Multiscale Science and Engineering, 2019, 1, pp.34-46. ⟨10.1007/s42493-018-00012-y⟩, Multiscale Science and Engineering, Springer, 2019, 1, pp.34-46. ⟨10.1007/s42493-018-00012-y⟩
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- International audience; We derive some estimates of the rate of convergence of Schwarz Waveform Relaxation (SWR) methods for the Schrödinger equation using an arbitrary number of subdomains. Hence, we justify that under certain conditions, the rates of convergence mathematically obtained for two subdomains [6, 7, 8] are still asymptotically valid for a larger number of subdomains, as it is usually numerically observed [22].
Details
- Language :
- English
- ISSN :
- 25244515 and 25244523
- Database :
- OpenAIRE
- Journal :
- Multiscale Science and Engineering, Multiscale Science and Engineering, 2019, 1, pp.34-46. ⟨10.1007/s42493-018-00012-y⟩, Multiscale Science and Engineering, Springer, 2019, 1, pp.34-46. ⟨10.1007/s42493-018-00012-y⟩
- Accession number :
- edsair.dedup.wf.001..adcd899c9ca55e265b9adc5f5bc7c5b4
- Full Text :
- https://doi.org/10.1007/s42493-018-00012-y⟩