Back to Search Start Over

Asymptotic convergence rates of SWR methods for Schrödinger equations with an arbitrary number of subdomains

Authors :
Antoine, Xavier
Lorin, Emmanuel
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
School of Mathematics and Statistics [Ottawa]
Carleton University
Centre de Recherches Mathématiques [Montréal] (CRM)
Université de Montréal (UdeM)
X. Antoine was supported by the French National Research Agency project NABUCO, Grant ANR-17-CE40-0025.
E. Lorin thanks NSERC for the financial support via the Discovery Grant program.
ANR-17-CE40-0025,Nabuco,Frontières numériques et couplages(2017)
Source :
Multiscale Science and Engineering, Multiscale Science and Engineering, 2019, 1, pp.34-46. ⟨10.1007/s42493-018-00012-y⟩, Multiscale Science and Engineering, Springer, 2019, 1, pp.34-46. ⟨10.1007/s42493-018-00012-y⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; We derive some estimates of the rate of convergence of Schwarz Waveform Relaxation (SWR) methods for the Schrödinger equation using an arbitrary number of subdomains. Hence, we justify that under certain conditions, the rates of convergence mathematically obtained for two subdomains [6, 7, 8] are still asymptotically valid for a larger number of subdomains, as it is usually numerically observed [22].

Details

Language :
English
ISSN :
25244515 and 25244523
Database :
OpenAIRE
Journal :
Multiscale Science and Engineering, Multiscale Science and Engineering, 2019, 1, pp.34-46. ⟨10.1007/s42493-018-00012-y⟩, Multiscale Science and Engineering, Springer, 2019, 1, pp.34-46. ⟨10.1007/s42493-018-00012-y⟩
Accession number :
edsair.dedup.wf.001..adcd899c9ca55e265b9adc5f5bc7c5b4
Full Text :
https://doi.org/10.1007/s42493-018-00012-y⟩