1. The attainment set of the $\varphi$-envelope and genericity properties
- Author
-
Lionel Thibault, Dariusz Zagrodny, Alexandre Cabot, Abderrahim Jourani, Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bourgogne [Dijon] ( IMB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Montpelliérain Alexander Grothendieck ( IMAG ), and Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC] ,[ MATH ] Mathematics [math] ,Convex hull ,Discrete mathematics ,Infimal convolution ,General Mathematics ,010102 general mathematics ,Attainment sets ,Subderivative ,Norm Subdifferential Local Uniform Convexity (NSLUC) ,01 natural sciences ,Klee envelope ,Supremal convolution ,$\varphi$-envelope ,Legendre-Fenchel conjugate ,Norm (mathematics) ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,[MATH]Mathematics [math] ,0101 mathematics ,Subdifferential ,Mathematics - Abstract
International audience; The attainment set of the $\varphi-$envelope of a function at a given point is investigated. The inclusion of the attainment set of the $\varphi$-envelope of the closed convex hull of a function into the attainment set of the function is preserved in sufficiently general settings toencompass the case $\varphi $ being a norm in a power not less than $1$. The nonemptiness of the attainment set is guaranteed on genericsubsets of a given space, in several fundamental cases.
- Published
- 2019
- Full Text
- View/download PDF