Back to Search Start Over

ISOTROPIC DIFFEOMORPHISMS: SOLUTIONS TO A DIFFERENTIAL SYSTEM FOR A DEFORMED RANDOM FIELDS STUDY

Authors :
Briant , Marc
Fournier , Julie
Briant, Marc
Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145)
Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)
Fournier, Julie
Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 )
Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS )
Source :
MAP5 2017-14. 2017
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

This Note presents the resolution of a differential system on the plane that translates a geometrical problem about isotropic deformations of area and length. The system stems from a probability study on deformed random fields [J.Fournier '17], which are the composition of a random field with invariance properties defined on the plane with a deterministic diffeomorphism. The explicit resolution of the differential system allows to prove that a weak notion of isotropy of the deformed field, linked to its excursion sets, in fact coincides with the strong notion of isotropy. The present Note first introduces the probability framework that gave rise to the geometrical issue and then proposes its resolution.<br />8 pages

Details

Language :
English
Database :
OpenAIRE
Journal :
MAP5 2017-14. 2017
Accession number :
edsair.doi.dedup.....4e6b5debf5b7dd575de8f08788483901