Back to Search Start Over

A Theorem of Fermat on Congruent Number Curves

Authors :
Lorenz Halbeisen
Norbert Hungerbühler
Source :
Hardy-Ramanujan Journal.
Publication Year :
2019
Publisher :
Centre pour la Communication Scientifique Directe (CCSD), 2019.

Abstract

A positive integer $A$ is called a congruent number if $A$ is the area of a right-angled triangle with three rational sides. Equivalently, $A$ is a congruent number if and only if the congruent number curve $y^2=x^3-A^2x$ has a rational point $(x,y)\in\mathbb Q^2$ with $y\neq 0$. Using a theorem of Fermat, we give an elementary proof for the fact that congruent number curves do not contain rational points of finite order.<br />Comment: 8 pages, one figure

Details

ISSN :
28047370
Database :
OpenAIRE
Journal :
Hardy-Ramanujan Journal
Accession number :
edsair.doi.dedup.....54e33202276384359d753e3e4660ee21
Full Text :
https://doi.org/10.46298/hrj.2019.5101