Back to Search
Start Over
A Theorem of Fermat on Congruent Number Curves
- Source :
- Hardy-Ramanujan Journal.
- Publication Year :
- 2019
- Publisher :
- Centre pour la Communication Scientifique Directe (CCSD), 2019.
-
Abstract
- A positive integer $A$ is called a congruent number if $A$ is the area of a right-angled triangle with three rational sides. Equivalently, $A$ is a congruent number if and only if the congruent number curve $y^2=x^3-A^2x$ has a rational point $(x,y)\in\mathbb Q^2$ with $y\neq 0$. Using a theorem of Fermat, we give an elementary proof for the fact that congruent number curves do not contain rational points of finite order.<br />Comment: 8 pages, one figure
- Subjects :
- Congruent numbers
[ MATH ] Mathematics [math]
Fermat's Last Theorem
2010 Mathematics Subject Classification. primary 11G05
secondary 11D25
Mathematics - Number Theory
Mathematics::General Mathematics
Mathematics::Number Theory
010102 general mathematics
Order (ring theory)
010103 numerical & computational mathematics
Pythagorean triple
01 natural sciences
[ MATH.MATH-NT ] Mathematics [math]/Number Theory [math.NT]
Combinatorics
11G05, 11D25
Integer
Rational point
Elementary proof
FOS: Mathematics
Mathematics::Metric Geometry
Number Theory (math.NT)
0101 mathematics
Mathematics
Congruent number
Subjects
Details
- ISSN :
- 28047370
- Database :
- OpenAIRE
- Journal :
- Hardy-Ramanujan Journal
- Accession number :
- edsair.doi.dedup.....54e33202276384359d753e3e4660ee21
- Full Text :
- https://doi.org/10.46298/hrj.2019.5101