Submitted by Marilene Donadel (marilene.donadel@unioeste.br) on 2019-11-28T21:37:15Z No. of bitstreams: 1 Alcides_Tonhato_Junior_2015.pdf: 2442938 bytes, checksum: 19c83f7255ab0cd1da9c293a9a5cc0be (MD5) Made available in DSpace on 2019-11-28T21:37:15Z (GMT). No. of bitstreams: 1 Alcides_Tonhato_Junior_2015.pdf: 2442938 bytes, checksum: 19c83f7255ab0cd1da9c293a9a5cc0be (MD5) Previous issue date: 2018-12-10 In industrial wastewater treatment systems, the use of stabilization ponds prevails, but low performance results still persist, associated with the necessity of large surface areas occupied, difficulty in maintenance, inefficiency in operation, accumulation of rainwater, occurrence of preferential paths, dead zones formation, the absence of well defined geometric pattern, proliferation of unwanted organisms, ecological problems related to the local fauna, unpleasant odors, difficulty in monitoring, adjustment and controlling of operational parameters. Towards that scenario, the arguments of the thesis are: conventional lagoons, although widely used, do not constitute efficient technological options; industrial wastewater should not always be considered as a synonym to problems, when properly treated, they may present opportunities for exploitation, as a raw material for other transformation processes. In this context, the present work had as objective, the development and proposal of an innovative technology for the treatment of industrial liquid effluents based on biotechnological processes, in contrast to conventional lagoon systems. For this purpose, the methodology contemplated the accomplishment of 10 steps: 1) the characterization of the sources of industrial wastewater generation; 2) the qualitative and quantitative characterization of the wastewater of the industry under study; 3) exploration of methods, processes and technologies for the treatment of industrial wastewater; 4) the development of the alternative wastewater treatment system; 5) the planning, design, construction and assembly of the prototype (new technological solution); 6) the operationalization and experimental planning of the system; 7) the monitoring and operational controlling of variables and parameters; 8) analysis and systematization of results; 9) the evaluation of intellectual protection requirements; and 10) systematization and formatting of the new technological solution for the treatment of industrial wastewater (main object of work). The modular bioreactor developed in this work was constructed in reinforced concrete with 70 m length, 1.2 m wide and 0.6 m high, with an internal volume of 35000 L, the degradation process alternates between aerobic and anoxic conditions, being mostly anoxic. The main differentials of the equipment are found: in the continuous operation, in the multifunctional characteristic due to the auxiliary devices that provide the primary, secondary and tertiary treatment in the same equipment, in the practicality of the maintenance and also in the possibility of interrupting each module without compromising the operational continuity, in eliminating the formation of dead zones, short circuiting and deviations of untreated wastewater, in the serial or parallel operational arrangement, in the modular characteristic, which makes possible the implantation of auxiliary devices, in the ease of control and adjustment of operational parameters, in controlling the proliferation of undesired organisms, in the compact characteristic, when compared to conventional ponds, in the flexibility of the treatment capacity/flow rate of the wastewater, which is achieved by adding or subtracting modules according to demand, in the existence of the retractable roof, and module geometry that facilitates the deployment of auxiliary devices. The module was promising in the treatment of the effluents from slaughterhouses wastewater after primary treatment, and the best result showed removal of 76.09% COD, 96.67% BOD, 22.86% total Nitrogen, 27.50% of Ammonia, 62.5% of Nitrite, 7.9% of Nitrate, 81.30% of total Phosphorus, 86.18% of total solids and 98.54% of oils and greases, operating with feed rate of 605.17 L h-1 and residence time of 2.41 days. Partial nitrification may have occurred on a continuous scale in the first stage of the tests. The bioreactor used in this research was deposited at the National Institute of Intellectual Property, entitled "Multifunctional modular pond for treatment of wastewater based on biotechnological processes" (nº BR 20 2018 002560 6, deposited in 07/02/2018). Thus, the development of this environmental technology contributes to the sustainability of industrial activities. Nos sistemas de tratamento de efluentes líquidos industriais prevalecem o uso de lagoas de estabilização, porém, nelas ainda persistem os baixos desempenhos associado a necessidade de grandes áreas superficiais ocupadas, dificuldade na manutenção, ineficiência na operação, acúmulo de água de chuva, ocorrência de caminhos preferenciais, formação de zonas mortas, não há um padrão geométrico bem definido, proliferação de organismos indesejados, problemas ecológicos relacionados à fauna local, odores desagradáveis, dificuldade de monitoramento, ajuste e controle de parâmetros operacionais. Diante desse cenário, os elementos argumentativos da tese são: as lagoas convencionais, embora muito utilizadas, não se constituem em opções tecnológicas eficientes; os efluentes industriais nem sempre devem ser considerados como sinônimo de problemas, eles podem apresentar oportunidades de aproveitamento, como matéria prima de outros processos de transformação, quando tratados corretamente. Nesse contexto, o presente trabalho teve como objetivo o desenvolvimento e a proposição de uma tecnologia inovadora para o tratamento de efluentes líquidos industriais com base em processo biotecnológicos, em contrapartida aos sistemas de lagoas convencionais. Para essa finalidade a metodologia contemplou a realização de 10 etapas: 1) a caracterização das fontes de geração de efluentes industriais; 2) a caracterização qualitativa e quantitativa dos efluentes da indústria em estudo; 3) a prospecção de métodos, processos e tecnologias de tratamento de efluentes industriais; 4) o desenvolvimento do sistema alternativo de tratamento de efluentes; 5) o planejamento, projeto, construção e montagem do protótipo (nova solução tecnológica); 6) a operacionalização e o planejamento experimental do sistema; 7) o monitoramento e controle operacional das variáveis e parâmetros; 8) a análise e a sistematização dos resultados; 9) a avaliação dos requisitos de proteção intelectual; e 10) a sistematização e a formatação da nova solução tecnológica de tratamento de efluentes industriais (objeto principal do trabalho). O biorreator modular desenvolvido neste trabalho foi construído em concreto armado com 70 m de comprimento, 1,2 m de largura e 0,6 m de altura, com volume interno de 35000 L, o processo de degradação alterna entre condições aeróbicas e anóxicas, sendo predominantemente anóxico. Os principais diferenciais do equipamento se encontram: na operação continua, na característica multifuncional devido aos dispositivos auxiliares que propiciam o tratamento primário, secundário e terciário em um mesmo equipamento, na praticidade da manutenção e também pela possibilidade da interrupção de cada módulo sem comprometer a continuidade operacional, na eliminação da formação de zonas mortas, caminhos preferenciais e desvios de efluente líquido sem tratamento, no arranjo operacional em série ou em paralelo, na característica modular que viabiliza a implantação de dispositivos auxiliares, na facilidade de controle e ajuste dos parâmetros operacionais, no controle da proliferação de organismos indesejados, na característica compacta, quando comparado com as lagoas convencionais, na flexibilidade da capacidade/vazão de tratamento do efluente líquido, o qual é conseguido pela adição ou subtração de módulos conforme demanda, na existência da cobertura retrátil, e na geometria do módulo que facilita a implantação de dispositivos auxiliares. O módulo mostrou-se promissor no tratamento de efluente de graxaria pós tratamento primário, e o melhor resultado observado apresentou remoções de 76,09% de DQO, 96,67% de DBO, 22,86% de Nitrogênio total, 27,50% de Amônia, 62,5% de Nitrito, 7,9% de Nitrato, 81,30% de Fósforo total, 86,18% de sólidos totais e 98,54% de óleos e graxas, operando com a vazão de alimentação de 605,17 L h-1 e o tempo de residência de 2,41 dias. Observou-se a ocorrência da nitrificação parcial para a primeira etapa de testes. O biorreator empregado nesta pesquisa foi depositado no Instituto Nacional de Propriedade Intelectual (INPI), intitulado “Lagoa modular multifuncional para tratamento de efluentes líquidos com base em processos biotecnológicos” (nº BR 20 2018 002560 6, depositado em 07/02/2018). Desta forma, por meio do desenvolvimento de tecnologia ambiental, contribui-se com a sustentabilidade das atividades industriais.