151. A Numerical Investigation of the Scaled-up Effects on Flow, Heat Transfer, and Kinetics Processes of FCC Units
- Author
-
S. L. Chang, C. Q. Zhou, S. A. Lottes, B. Golchert, and M. Petrick
- Abstract
Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. Process development is generally very time consuming especially when a small pilot unit is being scaled-up to a large commercial unit because of the lack of information to aide in the design of scaled-up units. Such information can now be obtained by analysis based on the pilot scale measurements and computer simulation that includes controlling physics of the FCC system. A Computational fluid dynamic (CFD) code, ICRKFLO, has been developed at Argonne National Laboratory (ANL) and has been successfully applied to the simulation of catalytic petroleum cracking risers. It employs hybrid hydrodynamic-chemical kinetic coupling techniques, enabling the analysis of an FCC unit with complex chemical reaction sets containing tens or hundreds of subspecies. The code has been continuously validated based on pilot-scale experimental data. It is now being used to investigate the effects of scaled-up FCC units. Among FCC operating conditions, the feed injection conditions are found to have a strong impact on the product yields of scaled-up FCC units. The feed injection conditions appear to affect flow and heat transfer patterns and the interaction of hydrodynamics and cracking kinetics causes the product yields to change accordingly.
- Published
- 1998
- Full Text
- View/download PDF