1,039 results on '"Hénon map"'
Search Results
1002. Knotted periodic orbits in suspensions of smale's horseshoe: Extended families and bifurcation sequences
- Author
-
Philip Holmes
- Subjects
Pure mathematics ,Mathematics::Dynamical Systems ,Statistical and Nonlinear Physics ,Condensed Matter Physics ,Mathematics::Geometric Topology ,Suspension (topology) ,Nonlinear Sciences::Chaotic Dynamics ,Hénon map ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,Classical mechanics ,Horseshoe map ,Periodic orbits ,Astrophysics::Earth and Planetary Astrophysics ,Bifurcation ,Mathematics ,Horseshoe (symbol) - Abstract
We consider knotted periodic orbits in the “natural” suspension of Smale's horseshoe map as constructed by Holmes and Williams (1985) and Holmes (1986). We identify quartets and octets of periodic orbits which are isotopic knots and indicate how they are related via the sequences of bifurcations in which they are created in two-parameter families such as the Henon map.
- Published
- 1989
- Full Text
- View/download PDF
1003. Stabilization of unstable periodic orbits of chaotic maps
- Author
-
N.A. Magnitskii
- Subjects
Control of chaos ,Mathematical analysis ,Chaotic ,Nonlinear map ,Hénon map ,Nonlinear Sciences::Chaotic Dynamics ,Computational Mathematics ,Periodic orbit ,Classical mechanics ,Computational Theory and Mathematics ,Simple (abstract algebra) ,Modeling and Simulation ,Modelling and Simulation ,Periodic orbits ,Chaos ,Logistic map ,Mathematics - Abstract
A simple method for the location and stabilization of unstable periodic orbits of chaotic maps is proposed. The method is illustrated through the examples of the logistic map and the Henon map.
- Full Text
- View/download PDF
1004. Controlling Discrete Time T-S Fuzzy Chaotic Systems via Adaptive Adjustment
- Author
-
Yibei Nian and Yongai Zheng
- Subjects
Lyapunov method ,Computer science ,Control (management) ,Chaotic ,Linear model ,Physics and Astronomy(all) ,Adaptive adjustment mechanism ,Fuzzy logic ,Hénon map ,Nonlinear Sciences::Chaotic Dynamics ,Discrete time and continuous time ,Chaotic systems ,Control theory ,State space ,T-S fuzzy model ,Chaotic system - Abstract
In order to overcome typical drawbacks of the OGY control, i.e. the long waiting time for control to be applied and the accessible turning system parameter in advance, this paper presents a new chaos control method based on Takagi- Sugeno (T-S) fuzzy model and adaptive adjustment. This method represents a chaotic system by linear models in different state space regions based on T-S fuzzy model and then stabilize the linear models in different state space regions by the adaptive adjustment mechanism. An example for the Henon map is given to demonstrate the effectiveness of the proposed method.
- Full Text
- View/download PDF
1005. The eigenvalue-matching renormalization group
- Author
-
Jian-Min Mao and Bambi Hu
- Subjects
Hénon map ,Physics ,Matching (graph theory) ,Quadratic map ,Computation ,General Physics and Astronomy ,Applied mathematics ,Renormalization group ,Bifurcation ,Eigenvalues and eigenvectors - Abstract
The eigenvalue-matching renormalization-group method is extended to the computation of the universal rescaling factors in addition to the universal bifurcation rate. Both the one-dimensional quadratic map and the two-dimensional area-preserving Henon map are studied. The computation has been carried to very high orders: eleventh in the one-dimensional case and eighth in the two-dimensional case. The accuracy is so high and the algorithm so efficient that it may be used as an alternative to the direct numerical procedure.
- Published
- 1985
- Full Text
- View/download PDF
1006. On the universality classes of the Henon map
- Author
-
Paulo R. Hauser, Evaldo M. F. Curado, and Constantino Tsallis
- Subjects
Hénon map ,Physics ,Renormalization ,General Physics and Astronomy ,Bifurcation ,Mathematical physics ,Universality (dynamical systems) - Abstract
Within an appropriate renormalization framework, we discuss a ∗ ( b ) and δ associated with the bifurcation road to chaos of a Henon-like map generalized as follows: ( x t +1 , y t +1 ) = (1− a | x t | z + y t , − bx t ); ( b ⩾0, z ⩾1). For fixed z, we obtained (i) only two universality classes, namely the conservative (b = 1) and non-conservative (b≠1) ones and (ii) a ∗ ( 1 b ) = a ∗ (b) b z . For b = 1, δ(z) presents a minimum, and diverges for z → 1 and z → ∞ (this contrasts with the b≠1 case).
- Published
- 1985
- Full Text
- View/download PDF
1007. Invariant directions in the Hénon map
- Author
-
M. Paramio and J. Sesma
- Subjects
Nonlinear Sciences::Chaotic Dynamics ,Physics ,Hénon map ,Pure mathematics ,Mathematics::Dynamical Systems ,Attractor ,General Physics and Astronomy ,Ergodic theory ,Invariant (mathematics) - Abstract
The invariant directions in the Henon map, easily calculable by means of a continued fraction algorithm, have been used to explore the ergodic nature of the attractor. Our results suggest that the extension by Pugh and Shub of the Bowen-Ruelle theorem is applicable to the Henon map.
- Published
- 1988
- Full Text
- View/download PDF
1008. Stabilizace chaosu: metody a aplikace
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Švihálková, Kateřina, Matoušek, Radomil, Dvořák, Jiří, and Švihálková, Kateřina
- Abstract
Diplomová práce se zabývá stabilizací vybraných systémů deterministického chaosu s~použitím heuristických a metaheuristických metod. Diskutovaná je parametrizace zvolených optimalizačních metod, kterými jsou genetické algoritmy, simulované žíhání a~pattern search. Dále jsou představeny vhodné řídící metody a definice kriteriální funkce. V teoretické části práce jsou nejdříve stručně vysvětleny základní pojmy z teorie deterministického chaosu. Větší část je pak věnována běžně studovaným chaotickým systémům a zároveň popisu nejpoužívanějších metod řízení deterministického chaosu, konkrétně OGY a Pyragasově metodě. Praktická část je rozdělena do dvou kapitol. První z nich se zabývá stabilizací umělých chaotických systémů pomocí metod zpožděné vazby (Pyragasovy metody) - TDAS i modifikované verze ETDAS. Druhá kapitola je ukázkou řízení reálného chaotického systému, kterým je Duffingův oscilátor., The diploma thesis is focused on the use of heuristic and metaheuristic methods to stabilization and controlling the selected systems distinguished by the deterministic chaos behavior. There are discussed parameterization of chosen optimization methods, which are the genetic algorithm, simulated annealing and pattern search. The thesis also introduced the suitable controlling methods and the definition of the objective function. In the theoretical part of the thesis there is a brief introduction to the deterministic chaos theory. The next chapters describes the most common and deployed methods in~the~control theory, especially OGY and Pyragas methods. The practical part of the thesis is divided into two chapters. The first one describes the~stabilization of the artifical chaotic systems with the time delayed Pyragas method - TDAS and its modification ETDAS. The second chapter shows the real chaotic system control. The Duffing oscillator system was chosen to serve this purpose.
1009. STABILIZACE CHAOSU: METODY A APLIKACE
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Kořenek, Miroslav, Matoušek, Radomil, Dvořák, Jiří, and Kořenek, Miroslav
- Abstract
Tato práce se zabývá metodami stabilizace deterministického chaosu. V úvodu je stručně uvedena problematika deterministického chaosu včetně aparátu používaného k popisu a analýze chaotických systémů. Dále jsou popsány nejznámější chaotické systémy, z nichž logistická a Hénonova mapa jsou zvoleny k experimentální stabilizaci. Následuje stručný popis standardních metod stabilizace chaosu TDAS a ETDAS. Navazuje kapitola věnovaná popisu genetického programování a jeho možnosti využití při stabilizaci chaosu. V praktické části práce byly ke stabilizaci zvolených systémů aplikovány standardní metody a různé způsoby implementace genetického programování. Využití a experimentování s genetickým programováním za účelem nalezení stabilizujících sekvencí je zásadním přínosem této práce., This thesis deals with methods of stabilizing deterministic chaos. The first part provides a brief overview of the problem of deterministic chaos, including the framework used to describe and analyze chaotic systems. Furthermore, the most well-known chaotic systems are described in detail, with the logistic map and the Hénon map selected for experimental stabilization. The description of conventional methods for chaos stabilization, namely TDAS and ETDAS, follows. The principle of their optimization is also explained. Next chapter is dedicated to describing genetic programming and its potential use in chaos stabilization. In the practical part of the thesis, conventional methods and various implementations of genetic programming were applied to stabilize the selected systems. The utilization and experimentation with genetic programming to find stabilizing sequences are the most significant contributions of this work.
1010. Stabilizace chaosu: metody a aplikace
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Švihálková, Kateřina, Matoušek, Radomil, Dvořák, Jiří, and Švihálková, Kateřina
- Abstract
Diplomová práce se zabývá stabilizací vybraných systémů deterministického chaosu s~použitím heuristických a metaheuristických metod. Diskutovaná je parametrizace zvolených optimalizačních metod, kterými jsou genetické algoritmy, simulované žíhání a~pattern search. Dále jsou představeny vhodné řídící metody a definice kriteriální funkce. V teoretické části práce jsou nejdříve stručně vysvětleny základní pojmy z teorie deterministického chaosu. Větší část je pak věnována běžně studovaným chaotickým systémům a zároveň popisu nejpoužívanějších metod řízení deterministického chaosu, konkrétně OGY a Pyragasově metodě. Praktická část je rozdělena do dvou kapitol. První z nich se zabývá stabilizací umělých chaotických systémů pomocí metod zpožděné vazby (Pyragasovy metody) - TDAS i modifikované verze ETDAS. Druhá kapitola je ukázkou řízení reálného chaotického systému, kterým je Duffingův oscilátor., The diploma thesis is focused on the use of heuristic and metaheuristic methods to stabilization and controlling the selected systems distinguished by the deterministic chaos behavior. There are discussed parameterization of chosen optimization methods, which are the genetic algorithm, simulated annealing and pattern search. The thesis also introduced the suitable controlling methods and the definition of the objective function. In the theoretical part of the thesis there is a brief introduction to the deterministic chaos theory. The next chapters describes the most common and deployed methods in~the~control theory, especially OGY and Pyragas methods. The practical part of the thesis is divided into two chapters. The first one describes the~stabilization of the artifical chaotic systems with the time delayed Pyragas method - TDAS and its modification ETDAS. The second chapter shows the real chaotic system control. The Duffing oscillator system was chosen to serve this purpose.
1011. Stabilizace chaosu: metody a aplikace
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Matoušek, Radomil, and Dvořák, Jiří
- Abstract
Diplomová práce se zabývá stabilizací vybraných systémů deterministického chaosu s~použitím heuristických a metaheuristických metod. Diskutovaná je parametrizace zvolených optimalizačních metod, kterými jsou genetické algoritmy, simulované žíhání a~pattern search. Dále jsou představeny vhodné řídící metody a definice kriteriální funkce. V teoretické části práce jsou nejdříve stručně vysvětleny základní pojmy z teorie deterministického chaosu. Větší část je pak věnována běžně studovaným chaotickým systémům a zároveň popisu nejpoužívanějších metod řízení deterministického chaosu, konkrétně OGY a Pyragasově metodě. Praktická část je rozdělena do dvou kapitol. První z nich se zabývá stabilizací umělých chaotických systémů pomocí metod zpožděné vazby (Pyragasovy metody) - TDAS i modifikované verze ETDAS. Druhá kapitola je ukázkou řízení reálného chaotického systému, kterým je Duffingův oscilátor., The diploma thesis is focused on the use of heuristic and metaheuristic methods to stabilization and controlling the selected systems distinguished by the deterministic chaos behavior. There are discussed parameterization of chosen optimization methods, which are the genetic algorithm, simulated annealing and pattern search. The thesis also introduced the suitable controlling methods and the definition of the objective function. In the theoretical part of the thesis there is a brief introduction to the deterministic chaos theory. The next chapters describes the most common and deployed methods in~the~control theory, especially OGY and Pyragas methods. The practical part of the thesis is divided into two chapters. The first one describes the~stabilization of the artifical chaotic systems with the time delayed Pyragas method - TDAS and its modification ETDAS. The second chapter shows the real chaotic system control. The Duffing oscillator system was chosen to serve this purpose.
1012. Stabilizace chaosu: metody a aplikace
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Matoušek, Radomil, and Dvořák, Jiří
- Abstract
Diplomová práce se zabývá stabilizací vybraných systémů deterministického chaosu s~použitím heuristických a metaheuristických metod. Diskutovaná je parametrizace zvolených optimalizačních metod, kterými jsou genetické algoritmy, simulované žíhání a~pattern search. Dále jsou představeny vhodné řídící metody a definice kriteriální funkce. V teoretické části práce jsou nejdříve stručně vysvětleny základní pojmy z teorie deterministického chaosu. Větší část je pak věnována běžně studovaným chaotickým systémům a zároveň popisu nejpoužívanějších metod řízení deterministického chaosu, konkrétně OGY a Pyragasově metodě. Praktická část je rozdělena do dvou kapitol. První z nich se zabývá stabilizací umělých chaotických systémů pomocí metod zpožděné vazby (Pyragasovy metody) - TDAS i modifikované verze ETDAS. Druhá kapitola je ukázkou řízení reálného chaotického systému, kterým je Duffingův oscilátor., The diploma thesis is focused on the use of heuristic and metaheuristic methods to stabilization and controlling the selected systems distinguished by the deterministic chaos behavior. There are discussed parameterization of chosen optimization methods, which are the genetic algorithm, simulated annealing and pattern search. The thesis also introduced the suitable controlling methods and the definition of the objective function. In the theoretical part of the thesis there is a brief introduction to the deterministic chaos theory. The next chapters describes the most common and deployed methods in~the~control theory, especially OGY and Pyragas methods. The practical part of the thesis is divided into two chapters. The first one describes the~stabilization of the artifical chaotic systems with the time delayed Pyragas method - TDAS and its modification ETDAS. The second chapter shows the real chaotic system control. The Duffing oscillator system was chosen to serve this purpose.
1013. STABILIZACE CHAOSU: METODY A APLIKACE
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Matoušek, Radomil, and Dvořák, Jiří
- Abstract
Tato práce se zabývá metodami stabilizace deterministického chaosu. V úvodu je stručně uvedena problematika deterministického chaosu včetně aparátu používaného k popisu a analýze chaotických systémů. Dále jsou popsány nejznámější chaotické systémy, z nichž logistická a Hénonova mapa jsou zvoleny k experimentální stabilizaci. Následuje stručný popis standardních metod stabilizace chaosu TDAS a ETDAS. Navazuje kapitola věnovaná popisu genetického programování a jeho možnosti využití při stabilizaci chaosu. V praktické části práce byly ke stabilizaci zvolených systémů aplikovány standardní metody a různé způsoby implementace genetického programování. Využití a experimentování s genetickým programováním za účelem nalezení stabilizujících sekvencí je zásadním přínosem této práce., This thesis deals with methods of stabilizing deterministic chaos. The first part provides a brief overview of the problem of deterministic chaos, including the framework used to describe and analyze chaotic systems. Furthermore, the most well-known chaotic systems are described in detail, with the logistic map and the Hénon map selected for experimental stabilization. The description of conventional methods for chaos stabilization, namely TDAS and ETDAS, follows. The principle of their optimization is also explained. Next chapter is dedicated to describing genetic programming and its potential use in chaos stabilization. In the practical part of the thesis, conventional methods and various implementations of genetic programming were applied to stabilize the selected systems. The utilization and experimentation with genetic programming to find stabilizing sequences are the most significant contributions of this work.
1014. STABILIZACE CHAOSU: METODY A APLIKACE
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Matoušek, Radomil, and Dvořák, Jiří
- Abstract
Tato práce se zabývá metodami stabilizace deterministického chaosu. V úvodu je stručně uvedena problematika deterministického chaosu včetně aparátu používaného k popisu a analýze chaotických systémů. Dále jsou popsány nejznámější chaotické systémy, z nichž logistická a Hénonova mapa jsou zvoleny k experimentální stabilizaci. Následuje stručný popis standardních metod stabilizace chaosu TDAS a ETDAS. Navazuje kapitola věnovaná popisu genetického programování a jeho možnosti využití při stabilizaci chaosu. V praktické části práce byly ke stabilizaci zvolených systémů aplikovány standardní metody a různé způsoby implementace genetického programování. Využití a experimentování s genetickým programováním za účelem nalezení stabilizujících sekvencí je zásadním přínosem této práce., This thesis deals with methods of stabilizing deterministic chaos. The first part provides a brief overview of the problem of deterministic chaos, including the framework used to describe and analyze chaotic systems. Furthermore, the most well-known chaotic systems are described in detail, with the logistic map and the Hénon map selected for experimental stabilization. The description of conventional methods for chaos stabilization, namely TDAS and ETDAS, follows. The principle of their optimization is also explained. Next chapter is dedicated to describing genetic programming and its potential use in chaos stabilization. In the practical part of the thesis, conventional methods and various implementations of genetic programming were applied to stabilize the selected systems. The utilization and experimentation with genetic programming to find stabilizing sequences are the most significant contributions of this work.
1015. STABILIZACE CHAOSU: METODY A APLIKACE
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Matoušek, Radomil, and Dvořák, Jiří
- Abstract
Tato práce se zabývá metodami stabilizace deterministického chaosu. V úvodu je stručně uvedena problematika deterministického chaosu včetně aparátu používaného k popisu a analýze chaotických systémů. Dále jsou popsány nejznámější chaotické systémy, z nichž logistická a Hénonova mapa jsou zvoleny k experimentální stabilizaci. Následuje stručný popis standardních metod stabilizace chaosu TDAS a ETDAS. Navazuje kapitola věnovaná popisu genetického programování a jeho možnosti využití při stabilizaci chaosu. V praktické části práce byly ke stabilizaci zvolených systémů aplikovány standardní metody a různé způsoby implementace genetického programování. Využití a experimentování s genetickým programováním za účelem nalezení stabilizujících sekvencí je zásadním přínosem této práce., This thesis deals with methods of stabilizing deterministic chaos. The first part provides a brief overview of the problem of deterministic chaos, including the framework used to describe and analyze chaotic systems. Furthermore, the most well-known chaotic systems are described in detail, with the logistic map and the Hénon map selected for experimental stabilization. The description of conventional methods for chaos stabilization, namely TDAS and ETDAS, follows. The principle of their optimization is also explained. Next chapter is dedicated to describing genetic programming and its potential use in chaos stabilization. In the practical part of the thesis, conventional methods and various implementations of genetic programming were applied to stabilize the selected systems. The utilization and experimentation with genetic programming to find stabilizing sequences are the most significant contributions of this work.
1016. Stabilizace chaosu: metody a aplikace
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Matoušek, Radomil, and Dvořák, Jiří
- Abstract
Diplomová práce se zabývá stabilizací vybraných systémů deterministického chaosu s~použitím heuristických a metaheuristických metod. Diskutovaná je parametrizace zvolených optimalizačních metod, kterými jsou genetické algoritmy, simulované žíhání a~pattern search. Dále jsou představeny vhodné řídící metody a definice kriteriální funkce. V teoretické části práce jsou nejdříve stručně vysvětleny základní pojmy z teorie deterministického chaosu. Větší část je pak věnována běžně studovaným chaotickým systémům a zároveň popisu nejpoužívanějších metod řízení deterministického chaosu, konkrétně OGY a Pyragasově metodě. Praktická část je rozdělena do dvou kapitol. První z nich se zabývá stabilizací umělých chaotických systémů pomocí metod zpožděné vazby (Pyragasovy metody) - TDAS i modifikované verze ETDAS. Druhá kapitola je ukázkou řízení reálného chaotického systému, kterým je Duffingův oscilátor., The diploma thesis is focused on the use of heuristic and metaheuristic methods to stabilization and controlling the selected systems distinguished by the deterministic chaos behavior. There are discussed parameterization of chosen optimization methods, which are the genetic algorithm, simulated annealing and pattern search. The thesis also introduced the suitable controlling methods and the definition of the objective function. In the theoretical part of the thesis there is a brief introduction to the deterministic chaos theory. The next chapters describes the most common and deployed methods in~the~control theory, especially OGY and Pyragas methods. The practical part of the thesis is divided into two chapters. The first one describes the~stabilization of the artifical chaotic systems with the time delayed Pyragas method - TDAS and its modification ETDAS. The second chapter shows the real chaotic system control. The Duffing oscillator system was chosen to serve this purpose.
1017. Stabilizace chaosu: metody a aplikace
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Matoušek, Radomil, and Dvořák, Jiří
- Abstract
Diplomová práce se zabývá stabilizací vybraných systémů deterministického chaosu s~použitím heuristických a metaheuristických metod. Diskutovaná je parametrizace zvolených optimalizačních metod, kterými jsou genetické algoritmy, simulované žíhání a~pattern search. Dále jsou představeny vhodné řídící metody a definice kriteriální funkce. V teoretické části práce jsou nejdříve stručně vysvětleny základní pojmy z teorie deterministického chaosu. Větší část je pak věnována běžně studovaným chaotickým systémům a zároveň popisu nejpoužívanějších metod řízení deterministického chaosu, konkrétně OGY a Pyragasově metodě. Praktická část je rozdělena do dvou kapitol. První z nich se zabývá stabilizací umělých chaotických systémů pomocí metod zpožděné vazby (Pyragasovy metody) - TDAS i modifikované verze ETDAS. Druhá kapitola je ukázkou řízení reálného chaotického systému, kterým je Duffingův oscilátor., The diploma thesis is focused on the use of heuristic and metaheuristic methods to stabilization and controlling the selected systems distinguished by the deterministic chaos behavior. There are discussed parameterization of chosen optimization methods, which are the genetic algorithm, simulated annealing and pattern search. The thesis also introduced the suitable controlling methods and the definition of the objective function. In the theoretical part of the thesis there is a brief introduction to the deterministic chaos theory. The next chapters describes the most common and deployed methods in~the~control theory, especially OGY and Pyragas methods. The practical part of the thesis is divided into two chapters. The first one describes the~stabilization of the artifical chaotic systems with the time delayed Pyragas method - TDAS and its modification ETDAS. The second chapter shows the real chaotic system control. The Duffing oscillator system was chosen to serve this purpose.
1018. Stabilizace chaosu: metody a aplikace
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Švihálková, Kateřina, Matoušek, Radomil, Dvořák, Jiří, and Švihálková, Kateřina
- Abstract
Diplomová práce se zabývá stabilizací vybraných systémů deterministického chaosu s~použitím heuristických a metaheuristických metod. Diskutovaná je parametrizace zvolených optimalizačních metod, kterými jsou genetické algoritmy, simulované žíhání a~pattern search. Dále jsou představeny vhodné řídící metody a definice kriteriální funkce. V teoretické části práce jsou nejdříve stručně vysvětleny základní pojmy z teorie deterministického chaosu. Větší část je pak věnována běžně studovaným chaotickým systémům a zároveň popisu nejpoužívanějších metod řízení deterministického chaosu, konkrétně OGY a Pyragasově metodě. Praktická část je rozdělena do dvou kapitol. První z nich se zabývá stabilizací umělých chaotických systémů pomocí metod zpožděné vazby (Pyragasovy metody) - TDAS i modifikované verze ETDAS. Druhá kapitola je ukázkou řízení reálného chaotického systému, kterým je Duffingův oscilátor., The diploma thesis is focused on the use of heuristic and metaheuristic methods to stabilization and controlling the selected systems distinguished by the deterministic chaos behavior. There are discussed parameterization of chosen optimization methods, which are the genetic algorithm, simulated annealing and pattern search. The thesis also introduced the suitable controlling methods and the definition of the objective function. In the theoretical part of the thesis there is a brief introduction to the deterministic chaos theory. The next chapters describes the most common and deployed methods in~the~control theory, especially OGY and Pyragas methods. The practical part of the thesis is divided into two chapters. The first one describes the~stabilization of the artifical chaotic systems with the time delayed Pyragas method - TDAS and its modification ETDAS. The second chapter shows the real chaotic system control. The Duffing oscillator system was chosen to serve this purpose.
1019. Stabilizace chaosu: metody a aplikace
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Švihálková, Kateřina, Matoušek, Radomil, Dvořák, Jiří, and Švihálková, Kateřina
- Abstract
Diplomová práce se zabývá stabilizací vybraných systémů deterministického chaosu s~použitím heuristických a metaheuristických metod. Diskutovaná je parametrizace zvolených optimalizačních metod, kterými jsou genetické algoritmy, simulované žíhání a~pattern search. Dále jsou představeny vhodné řídící metody a definice kriteriální funkce. V teoretické části práce jsou nejdříve stručně vysvětleny základní pojmy z teorie deterministického chaosu. Větší část je pak věnována běžně studovaným chaotickým systémům a zároveň popisu nejpoužívanějších metod řízení deterministického chaosu, konkrétně OGY a Pyragasově metodě. Praktická část je rozdělena do dvou kapitol. První z nich se zabývá stabilizací umělých chaotických systémů pomocí metod zpožděné vazby (Pyragasovy metody) - TDAS i modifikované verze ETDAS. Druhá kapitola je ukázkou řízení reálného chaotického systému, kterým je Duffingův oscilátor., The diploma thesis is focused on the use of heuristic and metaheuristic methods to stabilization and controlling the selected systems distinguished by the deterministic chaos behavior. There are discussed parameterization of chosen optimization methods, which are the genetic algorithm, simulated annealing and pattern search. The thesis also introduced the suitable controlling methods and the definition of the objective function. In the theoretical part of the thesis there is a brief introduction to the deterministic chaos theory. The next chapters describes the most common and deployed methods in~the~control theory, especially OGY and Pyragas methods. The practical part of the thesis is divided into two chapters. The first one describes the~stabilization of the artifical chaotic systems with the time delayed Pyragas method - TDAS and its modification ETDAS. The second chapter shows the real chaotic system control. The Duffing oscillator system was chosen to serve this purpose.
1020. STABILIZACE CHAOSU: METODY A APLIKACE
- Author
-
Matoušek, Radomil, Dvořák, Jiří, Kořenek, Miroslav, Matoušek, Radomil, Dvořák, Jiří, and Kořenek, Miroslav
- Abstract
Tato práce se zabývá metodami stabilizace deterministického chaosu. V úvodu je stručně uvedena problematika deterministického chaosu včetně aparátu používaného k popisu a analýze chaotických systémů. Dále jsou popsány nejznámější chaotické systémy, z nichž logistická a Hénonova mapa jsou zvoleny k experimentální stabilizaci. Následuje stručný popis standardních metod stabilizace chaosu TDAS a ETDAS. Navazuje kapitola věnovaná popisu genetického programování a jeho možnosti využití při stabilizaci chaosu. V praktické části práce byly ke stabilizaci zvolených systémů aplikovány standardní metody a různé způsoby implementace genetického programování. Využití a experimentování s genetickým programováním za účelem nalezení stabilizujících sekvencí je zásadním přínosem této práce., This thesis deals with methods of stabilizing deterministic chaos. The first part provides a brief overview of the problem of deterministic chaos, including the framework used to describe and analyze chaotic systems. Furthermore, the most well-known chaotic systems are described in detail, with the logistic map and the Hénon map selected for experimental stabilization. The description of conventional methods for chaos stabilization, namely TDAS and ETDAS, follows. The principle of their optimization is also explained. Next chapter is dedicated to describing genetic programming and its potential use in chaos stabilization. In the practical part of the thesis, conventional methods and various implementations of genetic programming were applied to stabilize the selected systems. The utilization and experimentation with genetic programming to find stabilizing sequences are the most significant contributions of this work.
1021. A Two-dimensional Mapping with a Strange Attractor
- Author
-
M. Hénon
- Subjects
40A05 ,Rössler attractor ,Plane (geometry) ,Mathematical analysis ,Statistical and Nonlinear Physics ,Lorenz system ,Fixed point ,Cantor set ,Hénon map ,Product (mathematics) ,Attractor ,Mathematical Physics ,Mathematical physics ,Mathematics - Abstract
Lorenz (1963) has investigated a system of three first-order differential equations, whose solutions tend toward a “strange attractor”. We show that the same properties can be observed in a simple mapping of the plane defined by: \({x_{i + 1}} = {y_i} + 1 - ax_i^2,{y_{i + 1}} = b{x_i}\). Numerical experiments are carried out for a =1.4, b = 0.3. Depending on the initial point (x 0,y 0), the sequence of points obtained by iteration of the mapping either diverges to infinity or tends to a strange attractor, which appears to be the product of a onedimensional manifold.by a Cantor set.
- Published
- 1976
- Full Text
- View/download PDF
1022. Truncated Development of Chaotic Attractors in a Map when the Jacobian is not Small
- Author
-
T. Short and James A. Yorke
- Subjects
Mathematics::Dynamical Systems ,Mathematical analysis ,Chaotic ,Periodic point ,Conformal map ,Nonlinear Sciences::Chaotic Dynamics ,Hénon map ,symbols.namesake ,Jacobian matrix and determinant ,Attractor ,symbols ,Orbit (dynamics) ,Mathematics ,Horseshoe (symbol) - Abstract
Numerical studies of a map that models the rotation of a periodically kicked rotor with friction reveal chaotic attractors. At parameter values that precede the existence of a horseshoe a chaotic attractor is found. The growth and destruction of this attractor are studied in relation to the early stages of the formation of a horseshoe in the region. A pattern, also seen in a Henon map, is that of a “crisis” which occurs as the parameter increases2. The chaotic attractor has 2n pieces upon collision with an orbit of period 3×2n. This crisis marks the destruction of the attractor. The value of n depends on the Jacobian of the map.
- Published
- 1984
- Full Text
- View/download PDF
1023. Chaos From Switched-Capacitor Circuits: Discrete Maps
- Author
-
José L. Huertas, Adoración Rueda, Leon O. Chua, Ángel Rodríguez-Vázquez, Belén Pérez-Verdú, and Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo
- Subjects
Dynamical systems theory ,Analog computer ,MathematicsofComputing_NUMERICALANALYSIS ,Discrete circuit ,Topology ,Switched capacitor ,law.invention ,Hénon map ,Nonlinear system ,Computer Science::Hardware Architecture ,Bifurcation theory ,Control theory ,law ,Electrical and Electronic Engineering ,Logistic map ,Mathematics - Abstract
A special-purpose analog computer made of switched-capacitor circuits is presented for analyzing chaos and bifurcation phenomena in nonlinear discrete dynamical systems modeled by discrete maps x n + 1 = f(x n ) Experimental results are given for four switched-capacitor circuits described by well-known discrete maps; namely, the logistic map, the piecewise-linear unimodal (one-hump) map, the Henon map, and the Lozi map.
- Published
- 1987
1024. Design of Advanced Targeting Cost Function for Evolutionary Optimization of Chaos Control
- Author
-
Ivan Zelinka, Roman Senkerik, and Zuzana Kominkova Oplatkova
- Subjects
Hénon map ,Control of chaos ,Engineering ,Mathematical optimization ,Robustness (computer science) ,business.industry ,Chaotic ,Evolutionary algorithm ,business - Abstract
This research deals with the optimization of the control of chaos by means of evolutionary algorithms. The main aim of this work is to show that powerful optimizing tools like evolutionary algorithms can in reality be used for the optimization of deterministic chaos control. This work is aimed on an explanation of how to use evolutionary algorithms (EAs) and how to properly define the advanced targeting cost function (CF) securing very fast and precise stabilization of desired state for any initial conditions. As a model of deterministic chaotic system, the two dimensional Henon map was used. The evolutionary algorithm SelfOrganizing Migrating Algorithm (SOMA) was used in four versions. For each version, repeated simulations were conducted to outline the effectiveness and robustness of used method and targeting CF.
1025. ON THE GEOMETRIC STRUCTURE OF NON-HYPERBOLIC ATTRACTORS
- Author
-
Antonio Politi, Remo Badii, and Peter Grassberger
- Subjects
Mathematics::Dynamical Systems ,Spectrum (functional analysis) ,Phase (waves) ,Structure (category theory) ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,Type (model theory) ,Upper and lower bounds ,Nonlinear Sciences::Chaotic Dynamics ,Hénon map ,Alpha (programming language) ,Quantum mechanics ,Attractor ,Statistical physics ,Mathematical Physics ,Mathematics - Abstract
The authors discuss the f( alpha ), spectrum of non-hyperbolic attractors of the Henon type. They elucidate the origin of the 'phase transition' found in a previous paper, and give a lower bound to the spectrum in the non-hyperbolic 'phase' where Kaplan-Yorke-type formulae no longer hold. Their results disagree with other recent attempts. Numerical simulations for the Henon map agree with analytical estimates.
1026. A New 2D Henon-Logistic Map for Producing Hyperchaotic Behavior
- Author
-
Nadia M. G. Al-Saidi, Hayder Natiq, and Wafaa A. Hussein
- Subjects
Nonlinear Sciences::Chaotic Dynamics ,Hénon map ,Nonlinear system ,symbols.namesake ,Series (mathematics) ,Computer science ,Chaotic ,symbols ,Applied mathematics ,Lyapunov exponent ,Logistic map ,Bifurcation diagram ,Stability (probability) - Abstract
Derived from the two-dimensional (2D) Henon map and the one-dimensional (1D) Logistic map, this paper proposes a new 2D hyperchaotic map, called the 2D Henon-Logistic map (2D-HLM). The dynamics of the 2D-HLM are investigated by means of equilibria, stability analysis, trajectory, Lyapunov exponent, and bifurcation diagram. Mathematical analysis reveals that the 2D-HLM has four unstable equilibria. Besides that, it has wide chaotic and hyperchaotic behaviors with very limited periodic windows. To evaluate the complexity performance of the 2D-HLM, Approximate entropy is used to analyze its time series. Consequently, the 2D-HLM exhibits extremely complex nonlinear behavior. With all of these attributes, the 2D-HLM would be very appropriate to produce a pseudo-random number generator that can be used in chaos-based cryptographic applications.
1027. Prediction of dynamical phenomena by a neural network
- Author
-
Igor Grabec
- Subjects
Hénon map ,Artificial neural network ,Control theory ,Computer science ,Adaptive system ,Chaotic ,Information processor ,Content-addressable storage ,Signal ,Algorithm ,Shift register - Abstract
An adaptive information processing system capable of predicting dynamical phenomena is described. It includes a neural network-like memory, a predictor, two shift registers, and a comparator. In the memory, an internal empirical model of observed phenomena is formed. It is described by a set of memorized prototype transitions between successive states of an input time-dependent signal which can also be chaotic. System operation is demonstrated on a chaotic signal generated by the Henon map. >
1028. Adaptive synchronization of globally coupled chaotic oscillators using control in noisy environments
- Author
-
Gérard Boudjema, Bernard Cazelles, and Nguyen Phong Chau
- Subjects
Hénon map ,Noise ,Adaptive control ,Control theory ,Computer science ,Statistical and Nonlinear Physics ,Kalman filter ,Condensed Matter Physics ,Cluster analysis ,Synchronization ,Biological network ,Parametric statistics - Abstract
By making use of a parametric adaptive control, it is possible to synchronize, desynchronize or resynchronize a network of globally coupled chaotic oscillators in the presence of large noise. The method, base on the Kalman filter, is applied to logistic and Henon map lattices. This method can be regarded as an adaptive mechanism with potential relevance to biological systems. This mechanism may allow complex self-regulated biological networks to modify their clustering behavior in so as to fit environmental changes, thus optimizing their performances.
1029. Lyapunov exponents calculated from heart rate variability time series
- Author
-
Maria G. Signorini and Sergio Cerutti
- Subjects
Series (mathematics) ,Quantitative Biology::Tissues and Organs ,Physics::Medical Physics ,Mathematical analysis ,Chaotic ,Lyapunov exponent ,Exponential function ,Nonlinear Sciences::Chaotic Dynamics ,Hénon map ,symbols.namesake ,Attractor ,symbols ,State space ,Statistical physics ,Divergence (statistics) ,Mathematics - Abstract
The chaotic deterministic approach is a fascinating and efficient descriptive paradigm for complexity in biological systems. It can explain the organized variability inherent in physiological structure and function. Lyapunov exponents quantify the exponential divergence of trajectories which happens for chaotic systems in state space. Here, the authors compute the positive and the entire spectrum of Lyapunov exponents. They present the results obtained on time series from classical chaotic attractors, like the Henon map and the Rossler system as well as on experimental time series derived from the heart rate variability (HRV) signal. The HRV time series considered refer to normal subjects and to patients with cardiovascular diseases. It is concluded that the chaotic characteristics of the cardiovascular regulation system seem to be confirmed. >
1030. Identifiability and identification of chaotic systems based on adaptive synchronization
- Author
-
H. Dedieu and Maciej Ogorzalek
- Subjects
Chua's circuit ,Adaptive control ,Computer science ,Synchronization of chaos ,chaos ,Chaotic ,System identification ,Non-Linear Signal Processing ,Synchronization ,Hénon map ,Nonlinear Sciences::Chaotic Dynamics ,Control theory ,Identifiability ,Electrical and Electronic Engineering - Abstract
This paper deals with the problem of synchronization of chaotic systems when the driven (slave, receiver) system has the same structure as the master (driving, emitter) system but its parameters are unknown. It is shown that the concept of synchronization provides an efficient way to find the unknown slave system parameters. Parameter mismatch between master and slave systems and high sensitivity of response to changes of these parameters were so far considered as crucial for security issues. This paper shows evidence that this claimed advantage becomes in fact a major drawback in chaos communication schemes since parameters ran easily be found using adaptive synchronization and optimization tools. The general problem of identifiability of chaotic systems is defined and discussed in the context of possibilities for finding the unknown chaotic receiver parameters. Several typical systems used in experiments in chaos communication are tested for identifiability showing direct applications of the introduced concepts. In particular examples of the skew tent map, Henon map, Markov maps and Chua's circuit are considered in detail illustrating the problems of global and local identifiability.
1031. Cost function design for evolutionary optimization of deterministic chaos control
- Author
-
Ivan Zelinka, Eduard Navratil, and Roman Senkerik
- Subjects
Control of chaos ,Hénon map ,CHAOS (operating system) ,Mathematical optimization ,Robustness (computer science) ,Control (management) ,Chaotic ,Evolutionary algorithm ,Function (mathematics) ,Mathematics - Abstract
This contribution deals with optimization of the control of chaos by means of evolutionary algorithms. The main aim of this work is to show that evolutionary algorithms are capable of optimization of chaos control and to show several methods of constructing the complex cost function leading to satisfactory results. As a model of deterministic chaotic system the two dimensional Henon map was used. The optimizations were realized in several ways, each one for another cost function or another desired periodic orbit and behavior of system. The evolutionary algorithm Self-Organizing Migrating Algorithm (SOMA) was used in four versions. For each version, simulations were repeated several times to show and check robustness of used method and cost function. At the end of this work the results of optimized chaos control for each designed cost function are compared.
1032. Fuzzy predictive control of uncertain chaotic systems using time series
- Author
-
Guanrong Chen and Liang Chen
- Subjects
Lyapunov stability ,Series (mathematics) ,Basis (linear algebra) ,Applied Mathematics ,Gaussian ,Chaotic ,Fuzzy control system ,Fuzzy logic ,Hénon map ,symbols.namesake ,Control theory ,Modeling and Simulation ,symbols ,Engineering (miscellaneous) ,Mathematics - Abstract
In this paper, a simple fuzzy logic based intelligent mechanism is developed for predicting and controlling a chaotic system to a desired target, using only input–output data obtained from the unknown (or uncertain) underlying chaotic system. In the chaos prediction phase, a fuzzy system approach incorporating with Gaussian type of fuzzy membership functions is used. Only system input–output data are needed for prediction, and a recursive least-squares computational algorithm is employed for the calculation. In the controller design phase, the Lyapunov stability criterion is used, which forms the basis of the main design principle. Some simulation results on the chaotic Sin map and Hénon map are given, for both prediction and control, to illustrate the effectiveness and control performance of the proposed method.
1033. Investigation on evolutionary EDTAS chaos control
- Author
-
Ivan Zelinka, Eduard Navratil, and Roman Senkerik
- Subjects
CHAOS (operating system) ,Set (abstract data type) ,Hénon map ,medicine.anatomical_structure ,Robustness (computer science) ,Computer science ,Control (management) ,medicine ,Chaotic ,Evolutionary algorithm ,Soma ,Algorithm - Abstract
This work deals with an investigation on optimization of the feedback control of chaos based on using of the evolutionary algorithms. The main aim of this work is to show that evolutionary algorithms are capable of optimization of chaos control. As a model of deterministic chaotic system the Henon map was used. The optimizations were realized in several ways, each one for another set of parameters of evolution algorithms or another cost functions. The evolutionary algorithm SOMA (Self-Organizing Migrating Algorithm) was used in four versions. For each version simulations were repeated several times to show and check robustness of used method.
1034. GENERATING PARTITIONS IN HENON-TYPE MAPS
- Author
-
Antonio Politi and F. Giovannini
- Subjects
Hénon map ,Physics ,symbols.namesake ,Pure mathematics ,Attractor ,symbols ,General Physics and Astronomy ,Partition (number theory) ,Lyapunov exponent ,Classification of discontinuities ,Coding (social sciences) - Abstract
We show that discontinuities in the construction of the generating partition, and in turn in the coding of some trajectories, have to be expected in Henon-type maps when a parameter is smoothly changed.
1035. ON THE TOPOLOGY OF THE HENON MAP
- Author
-
S. Isola, Antonio Politi, Peter Grassberger, and Giampaolo D'Alessandro
- Subjects
Discrete mathematics ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,Monotonic function ,Topological entropy ,Directed graph ,Topology ,Hénon map ,Combinatorics ,Exponent ,Adjacency matrix ,Homoclinic orbit ,Mathematical Physics ,Eigenvalues and eigenvectors ,Mathematics - Abstract
Topological invariants of the Henon map are investigated by means of the pruning front. First, a long sequence of primary homoclinic tangencies is computed, confirming the monotonicity of the front. An algorithm to extract forbidden sequences is then introduced and discussed. Forbidden sequences of increasing lengths are used to construct a hierarchy of regular grammars, represented by directed graphs, which approximate the exact grammar arbitrarily well. The topological entropy is estimated as the largest eigenvalue of their adjacency matrix. It exhibits an exponential convergence towards the asymptotic value with an exponent in agreement with a previous conjecture based on the growth rate of the number of forbidden words.
1036. Evolutionary optimization of chaos control - A new approach
- Author
-
Ivan Zelinka and Roman Senkerik
- Subjects
CHAOS (operating system) ,Hénon map ,Control of chaos ,Mathematical optimization ,Robustness (computer science) ,Computer science ,Chaotic ,Evolutionary algorithm ,Function (mathematics) ,Evolutionary programming - Abstract
This research deals with optimization of the control of chaos by means of evolutionary algorithms. The main aim of this work is to show that evolutionary algorithms are capable of the optimization of chaos control and to show a new approach of solving this problem and constructing new cost functions operating in “blackbox mode” without previous exact mathematical analysis of the system, thus without knowledge of stabilizing target state. As a model of deterministic chaotic system, the two dimensional Henon map was used. The optimizations was realized in several ways, each one for another desired periodic orbit. The evolutionary algorithm Self-Organizing Migrating Algorithm (SOMA) was used in four versions. For each version, repeated simulations were conducted to outline the effectiveness and robustness of used method and cost function.
1037. A three-dimensional dissipative map with three routes to chaos
- Author
-
Frank Zele and Donald L. Hitzl
- Subjects
Physics ,Nuclear and High Energy Physics ,Dynamical systems theory ,Mathematical analysis ,General Physics and Astronomy ,Conformal map ,Atomic and Molecular Physics, and Optics ,CHAOS (operating system) ,Hénon map ,symbols.namesake ,Attractor ,Jacobian matrix and determinant ,Dissipative system ,symbols ,Constant (mathematics) ,Mathematical physics ,Mathematics ,Free parameter - Abstract
The classical 2D Henon map has been generalized to 3D while maintaining the jacobian equal to a constant (− b ). A numerical exploration of this map has been conducted. If we fix b and vary the remaining free parameter β, three routes to chaos are observed, illustrated and analyzed.
- Published
- 1987
- Full Text
- View/download PDF
1038. A new chaotic behavior of a general model of the Henon map
- Author
-
Zaki F. E. El-Raheem, Ahmed M. A. El-Sayed, and S. M. Salman
- Subjects
Partial differential equation ,Mathematics::Dynamical Systems ,Algebra and Number Theory ,Applied Mathematics ,Mathematical analysis ,Chaotic ,Fixed point ,Hénon map ,Nonlinear Sciences::Chaotic Dynamics ,Ordinary differential equation ,Functional equation ,Attractor ,Applied mathematics ,Bifurcation ,Analysis ,Mathematics - Abstract
In this paper we are concerned with a general form of the Henon map as a retarded functional equation. The existence of a unique solution is proved. The continuous dependence of the solution and the local stability of fixed points are investigated. Chaos, bifurcation and chaotic attractor of the resulting system are discussed. In addition, we compare our results with the discrete dynamical system of the Henon map.
- Full Text
- View/download PDF
1039. On Consistent Nonparametric Order Determination and Chaos
- Author
-
Cheng, B. and Tong, H.
- Published
- 1992
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.