48 results on '"Thomas Zemb"'
Search Results
2. On the shape and connections of micelles: electron microscopy imaging inspiring thermodynamic modelling
- Author
-
Dganit Danino and Thomas Zemb
- Subjects
Colloid and Surface Chemistry ,Polymers and Plastics ,Surfaces and Interfaces ,Physical and Theoretical Chemistry - Published
- 2022
- Full Text
- View/download PDF
3. Molecular Forces in Liquid–Liquid Extraction
- Author
-
Jean-François Dufrêche, Mario Špadina, Stjepan Marčelja, Thomas Zemb, Stéphane Pellet-Rostaing, Ruđer Bošković Institute (IRB), Faculty of Health Sciences, University of Ljubljana, Modélisation Mésoscopique et Chimie Théorique (LMCT), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Australian National University (ANU), ANR-18-CE29-0010,MULTISEPAR,Modelisation multi-échelle des phases organiques pour l'extraction liquid-liquide(2018), European Project: 320915,EC:FP7:ERC,ERC-2012-ADG_20120216,REE-CYCLE(2013), University of Ljubljana, and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Entropy ,Liquid-Liquid Extraction ,Supramolecular chemistry ,Ionic bonding ,Context (language use) ,02 engineering and technology ,Molecular Dynamics Simulation ,010402 general chemistry ,01 natural sciences ,Ion ,Phase (matter) ,Electrochemistry ,General Materials Science ,Spectroscopy ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Condensed Matter::Soft Condensed Matter ,Solvent ,Solutions ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Solvation shell ,Membrane ,Chemical physics ,Solvents ,0210 nano-technology - Abstract
International audience; The phase transfer of ions is driven by gradients of chemical potentials rather than concentrations alone (i.e., by both the molecular forces and entropy). Extraction is a combination of high-energy interactions that correspond to short-range forces in the first solvation shell such as ion pairing or complexation forces, with supramolecular and nanoscale organization. While the latter are similar to the long-range solvent-averaged interactions in the colloidal world, in solvent extraction they are associated with lower characteristic lengths of the nanometric domain. Modeling of such complex systems is especially complicated because the two domains are coupled, whereas the resulting free energy of extraction is around kBT to guarantee the reversibility of the practical process. Nevertheless, quantification is possible by considering a partitioning of space among the polar cores, interfacial film, and solvent. The resulting free energy of transfer can be rationalized by utilizing a combination of terms which represent strong complexation energies, counterbalanced by various entropic effects and the confinement of polar solutes in nanodomains dispersed in the diluent, together with interfacial extractant terms. We describe here this ienaics approach in the context of solvent extraction systems; it can also be applied to further complex ionic systems, such as membranes and biological interfaces.
- Published
- 2021
- Full Text
- View/download PDF
4. Bending: from thin interfaces to molecular films in microemulsions
- Author
-
Jean-François Dufrêche, Thomas Zemb, Modélisation Mésoscopique et Chimie Théorique (LMCT), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), ANR-18-CE29-0010,MULTISEPAR,Modelisation multi-échelle des phases organiques pour l'extraction liquid-liquide(2018), European Project: 320915,EC:FP7:ERC,ERC-2012-ADG_20120216,REE-CYCLE(2013), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Materials science ,Polymers and Plastics ,Thermodynamics ,Flexural rigidity ,02 engineering and technology ,Surfaces and Interfaces ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Curvature ,01 natural sciences ,Micelle ,0104 chemical sciences ,Condensed Matter::Soft Condensed Matter ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Colloid and Surface Chemistry ,Rigidity (electromagnetism) ,Molecular film ,Molecule ,Microemulsion ,Physical and Theoretical Chemistry ,Thin film ,0210 nano-technology - Abstract
International audience; Surfactant film rigidity is a ubiquitous general concept that is quantified in two different units. We show here how to convert the bending rigidity from reduced units of a virtual infinitely thin film (not made of molecules) into the chemical unit (kJ.mol-1) of a realistic film of monomolecular thickness. In most cases molecular lengths are not negligible versus curvature radius. Two bending constants for the elasticity of thin-shelled solids can be defined, as introduced by Gauss, whereas only one physical bending constant taking into account that the film cannot be teared has been introduced in the nineties by Hyde and Ninham. The explicit conversion depends on the topology and is different in the quasi-planar approximation, as well as the “direct” o/w or “reverse” w/o case of spherical or cylindrical micelles. We show some examples for classical and nonclassical micelles and microemulsions of different topologies in (H,N coordinates).
- Published
- 2020
- Full Text
- View/download PDF
5. Self-Regulated Ion Permeation through Extraction Membranes
- Author
-
Thomas Zemb, Helmuth Möhwald, Jean Duhamet, Maximilian Pleines, CEA Marcoule, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Max Planck Institute of Colloids and Interfaces, Max-Planck-Gesellschaft, Univ Regensburg, Inst Phys & Theoret Chem, D-93040 Regensburg, Germany, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chemistry ,Extraction (chemistry) ,Analytical chemistry ,02 engineering and technology ,Surfaces and Interfaces ,Permeation ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Ion ,Membrane ,Ion binding ,Chemical engineering ,Phase (matter) ,Electrochemistry ,General Materials Science ,0210 nano-technology ,Selectivity ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Dissolution ,ComputingMilieux_MISCELLANEOUS ,Spectroscopy - Abstract
Separation of rare earth compounds from water into an organic phase in practical cases requires the use of specific ion binding ligands in high concentrations. These tend to form complex liquid crystalline phases preferentially at ion-rich locations inside a pertraction membrane. They form a blocking layer above an ion concentration threshold, which is experimentally characterized. It is shown to limit the flux through the membrane, which is studied for the application of rare earth recycling, an example being the phase transfer of Nd from water into organic phase. This feedback leads to a stationary membrane permeation rate that can be modeled without any free parameters in very good agreement with experiment. The ion-specific formation and dissolution of the blocking layer, a feature found also in nature, and its control suggest further studies to enhance permeation as well as its selectivity control.
- Published
- 2017
- Full Text
- View/download PDF
6. Colloidal Model for the Prediction of the Extraction of Rare Earths Assisted by the Acidic Extractant
- Author
-
Mario Špadina, Thomas Zemb, Jean-François Dufrêche, Klemen Bohinc, Modélisation Mésoscopique et Chimie Théorique (LMCT), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Faculty of Health Sciences, University of Ljubljana, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), European Project: 320915,EC:FP7:ERC,ERC-2012-ADG_20120216,REE-CYCLE(2013), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and University of Ljubljana
- Subjects
Colloidal model ,solvent extraction ,acidic extractants ,self-assembly ,Chemistry ,Inorganic chemistry ,Extraction (chemistry) ,02 engineering and technology ,Surfaces and Interfaces ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Condensed Matter::Soft Condensed Matter ,Thermodynamic model ,Metal ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Colloid ,visual_art ,Electrochemistry ,visual_art.visual_art_medium ,General Materials Science ,Physics::Chemical Physics ,0210 nano-technology ,Spectroscopy - Abstract
International audience; We propose the statistical thermodynamic model for the prediction of the liquid–liquid extraction efficiency in the case of rare-earth metal cations using the common bis(2-ethyl-hexyl)phosphoric acid (HDEHP) extractant. In this soft matter-based approach, the solutes are modeled as colloids. The leading terms in free-energy representation account for: the complexation, the formation of a highly curved extractant film, lateral interactions between the different extractant head groups in the film, configurational entropy of ions and water molecules, the dimerization, and the acidity of the HDEHP extractant. We provided a full framework for the multicomponent study of extraction systems. By taking into account these different contributions, we are able to establish the relation between the extraction and general complexation at any pH in the system. This further allowed us to rationalize the well-defined optimum in the extraction engineering design. Calculations show that there are multiple extraction regimes even in the case of lanthanide/acid system only. Each of these regimes is controlled by the formation of different species in the solvent phase, ranging from multiple metal cation-filled aggregates (at the low acid concentrations in the aqueous phase), to the pure acid-filled aggregates (at the high acid concentrations in the aqueous phase). These results are contrary to a long-standing opinion that liquid–liquid extraction can be modeled with only a few species. Therefore, a traditional multiple equilibria approach is abandoned in favor of polydisperse spherical aggregate formations, which are in dynamic equilibrium.
- Published
- 2019
- Full Text
- View/download PDF
7. Nanometric Surface Oscillation Spectroscopy of Water-Poor Microemulsions
- Author
-
Mario Corti, Antonio Raudino, Laura Cantù, Maximilian Pleines, Thomas Zemb, Johannes Theisen, CNR Istituto per i Processi Chimico-Fisici (IPCF), Consiglio Nazionale delle Ricerche [Messina] (CNR), University of Catania [Italy], University of Milano, Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Univ Regensburg, Inst Phys & Theoret Chem, D-93040 Regensburg, Germany, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Università degli Studi di Milano = University of Milan (UNIMI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Dodecane ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,01 natural sciences ,Ion ,Metal ,chemistry.chemical_compound ,Phase (matter) ,Electrochemistry ,General Materials Science ,Microemulsion ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,chemistry ,Chemical engineering ,Surface wave ,visual_art ,visual_art.visual_art_medium ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
Selectively exchanging metal complexes between emulsified water-poor microemulsions and concentrated solutions of mixed electrolytes is the core technology for strategic metal recycling. Nanostructuration triggered by solutes present in the organic phase is understood, but little is known about fluctuations of the microemulsion-water interface. We use here a modified version of an optoelectric device initially designed for air bubbles, in order to evidence resonant electrically induced surface waves of an oily droplet suspended in an aqueous phase. Resonant waves of nanometer amplitude of a millimeter-sized microemulsion droplet containing a common ion-specific extractant diluted by dodecane and suspended in a solution of rare earth nitrate are evidenced for the first time with low excitation fields (5 V/cm). From variation of the surface wave spectrum with rare earth concentration, we evidence uptake of rare-earth ions at the interface and at higher concentration the formation of a thin "crust" of liquid crystal forming at unusually low concentration, indicative of a surface induced phase transition. The effect of the liquid crystal structure on the resonance spectrum is backed up by a model, which is used to estimate crust thickness.
- Published
- 2018
- Full Text
- View/download PDF
8. Preface to the Growth of Colloid and Interface Science Special Issue
- Author
-
Thomas Zemb, Walter Richtering, and Regine von Klitzing
- Subjects
Colloid ,Materials science ,Interface (Java) ,Electrochemistry ,General Materials Science ,Nanotechnology ,Surfaces and Interfaces ,Condensed Matter Physics ,Spectroscopy - Published
- 2019
- Full Text
- View/download PDF
9. Depletion of water-in-oil aggregates from poor solvents: Transition from weak aggregates towards reverse micelles
- Author
-
Thomas Zemb and Philippe Guilbaud
- Subjects
Aggregation number ,Polymers and Plastics ,Chemistry ,Aggregate (data warehouse) ,Nucleation ,Surfaces and Interfaces ,Micelle ,Colloid ,Colloid and Surface Chemistry ,Pulmonary surfactant ,Chemical engineering ,Organic chemistry ,Microemulsion ,Physical and Theoretical Chemistry ,Phase diagram - Abstract
We assemble here all available descriptions of oil-soluble surfactant aggregates with or without solutes, assumed to be located in the polar cores of reverse micelles. The presence of solutes is crucial for the formation of a well-defined interface, thus inducing a transition from a loose reverse aggregate into a more structured micelle. This transition can be followed by the concomitant decrease of the “critical aggregation concentration” (c.a.c.). The less organized state as reverse aggregates is predominant when no “nucleating” species such as water, salts, or acids are present. One way to understand this weak aggregation is a depletion driving to aggregates as pseudo-phases introduced by Tanford. Analogues coexisting pseudo-phases seem to exist: weak oil-in-water (o/w) aggregation with the so-called surfactant-free microemulsions, containing loose aggregates, and re-entrant phase diagrams presenting a lowest aggregation concentration (l.a.c.), as described in the seventies.
- Published
- 2015
- Full Text
- View/download PDF
10. Thermodynamic Description of Synergy in Solvent Extraction: II Thermodynamic Balance of Driving Forces Implied in Synergistic Extraction
- Author
-
Michael Bley, Sandrine Dourdain, J. Rey, Stéphane Pellet-Rostaing, Simon Gourdin, Jean-François Dufrêche, Thomas Zemb, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Modélisation Mésoscopique et Chimie Théorique (LMCT), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ANR-10-LABX-0005,CheMISyst,CHEmistry of Molecular and Interfacial Systems(2010), European Project: 320915,EC:FP7:ERC,ERC-2012-ADG_20120216,REE-CYCLE(2013), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Stereochemistry ,Thermodynamics ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Ion ,Colloid ,Phase (matter) ,Electrochemistry ,Molecule ,[CHIM]Chemical Sciences ,General Materials Science ,Spectroscopy ,Dynamic equilibrium ,Quantitative Biology::Biomolecules ,Chemistry ,Extraction (chemistry) ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Solvent ,Condensed Matter::Soft Condensed Matter ,0210 nano-technology - Abstract
International audience; In the second part of this study, we analyze the free energy of transfer in the case of synergistic solvent extraction. This free energy of the transfer of an ion in dynamic equilibrium between two coexisting phases is decomposed into four driving forces combining long-range interactions with the classical complexation free energy associated with the nearest neighbors. We demonstrate how the organometallic complexation is counterbalanced by the cost in free energy related to structural change on the colloidal scale in the solvent phase. These molecular forces of synergistic extraction are driven not only by the entropic term associated with the tight packing of electrolytes in the solvent and by the free energy cost of coextracting water toward the hydrophilic core of the reverse aggregates present but also by the entropic costs in the formation of the reverse aggregate and by the interfacial bending energy of the extractant molecules packed around the extracted species. Considering the sum of the terms, we can rationalize the synergy observed, which cannot be explained by classical extraction modeling. We show an industrial synergistic mixture combining an amide and a phosphate complexing site, where the most efficient/selective mixture is observed for a minimal bending energy and maximal complexation energy.
- Published
- 2017
- Full Text
- View/download PDF
11. Self-assembly, phase behaviour and structural behaviour as observed by scattering for classical and non-classical microemulsions
- Author
-
Sylvain Prévost, Michael Gradzielski, Thomas Zemb, Institut Laue-Langevin (ILL), Technical University of Berlin / Technische Universität Berlin (TU), Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), ILL, Technische Universität Berlin (TU), and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Materials science ,Scattering ,Nanotechnology ,02 engineering and technology ,Surfaces and Interfaces ,Nonlinear Sciences::Cellular Automata and Lattice Gases ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Condensed Matter::Soft Condensed Matter ,Reciprocal lattice ,Colloid and Surface Chemistry ,Chemical physics ,Phase (matter) ,Monolayer ,Cylinder ,[CHIM]Chemical Sciences ,Microemulsion ,Physical and Theoretical Chemistry ,Small-angle scattering ,0210 nano-technology ,Scaling ,ComputingMilieux_MISCELLANEOUS - Abstract
In this review, we discuss the conditions for forming microemulsions, systems which are thermodynamically stable mixtures of oil and water made stable by the presence of an interfacial film containing surface active molecules. There are several types of microemulsions, depending largely on the stiffness of the amphiphilic monolayer that separates the oily and the aqueous micro-domain. We first discuss and compare the phase behaviour of these different types, starting from the classical microemulsion made from a flexible surfactant film but then also moving on to less classical situations: this occurs when the interfacial film is stiff or when microemulsions are formed in the absence of a classical surfactant. In the second part, we relate these different microemulsion types to the structural features as can be determined via different methodologies by small angle scattering (SAS). Using absolute scaling, general theorems as well as fitting under constraints or to pre-supposed shapes in real space or correlation functions in reciprocal space allows to classify all microemulsions into classical flexible, rigid or ultra-flexible microemulsions with either globular, connected cylinder of locally flat interfaces, with the corresponding conductivity and phase stability properties.
- Published
- 2017
- Full Text
- View/download PDF
12. Perpendicular and lateral equations of state in layered systems of amphiphiles
- Author
-
Thomas Zemb and Pierre Bauduin
- Subjects
Equation of state ,Polymers and Plastics ,Chemistry ,Vesicle ,Surfaces and Interfaces ,Condensed Matter::Soft Condensed Matter ,Colloid ,Crystallography ,Colloid and Surface Chemistry ,Lamellar phase ,Chemical physics ,Phase (matter) ,Perpendicular ,Lamellar structure ,Physical and Theoretical Chemistry ,Phase diagram - Abstract
For colloidal solutions containing any type of surfactant inducing the formation of locally flat interfaces, we show here that two equations of state are required to understand phase behaviour and stability: the perpendicular and the lateral equations of state. This applies to lamellar phases, locally lamellar connected or sponge phases, uni- and multilamellar vesicle phases formed by detergents, lipids, extractants and theta-shaped molecules in all solutions showing optical anisotropy.
- Published
- 2014
- Full Text
- View/download PDF
13. Thermodynamic description of synergy in solvent extraction: I. Enthalpy of mixing at the origin of synergistic aggregation
- Author
-
Jean-François Dufrêche, Thomas Zemb, Stéphane Pellet-Rostaing, J. Rey, Julie M. Muller, Sandrine Dourdain, Laurence Berthon, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Modélisation Mésoscopique et Chimie Théorique (LMCT), Département de recherche sur les procédés pour la mine et le recyclage du combustible (DMRC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ANR-10-LABX-0005,CheMISyst,CHEmistry of Molecular and Interfacial Systems(2010), European Project: 320915,EC:FP7:ERC,ERC-2012-ADG_20120216,REE-CYCLE(2013), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chemistry ,Extraction (chemistry) ,02 engineering and technology ,Surfaces and Interfaces ,Flory–Huggins solution theory ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Enthalpy of mixing ,Thermodynamic equations ,01 natural sciences ,Micelle ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Computational chemistry ,Electrochemistry ,Molecule ,Organic chemistry ,[CHIM]Chemical Sciences ,General Materials Science ,0210 nano-technology ,Solvent extraction ,Spectroscopy - Abstract
International audience; Revisiting aggregation of extractant molecules into water-poor mixed reverse micelles, we propose in this paper to identify the thermodynamic origins of synergy in solvent extraction. Considering that synergistic extraction properties of a mixture of extractants is related to synergistic aggregation of this mixture, we identify here the elements at the origin of synergy by independently investigating the effect of water, acid, and extracted cations. Thermodynamic equations are proposed to describe synergistic aggregation in the peculiar case of synergistic solvent extraction by evaluating critical aggregation concentration (CAC) as well as specific interactions between extractants due to the presence of water, acid and cations. Distribution of two extractant molecules in the free extractants and in reverse micelles was assessed, leading to an estimation of the in-plane interaction parameter between extractants in the aggregates as introduced by Bergström and Eriksson (Bergström, M.; Eriksson, J. C. A Theoretical Analysis of Synergistic Effects in Mixed Surfactant Systems. Langmuir 2000, 16, 7173−7181). Based on this model, we study the N,N′-dimethyl-N,N′-dioctylhexylethoxymalonamide (DMDOHEMA) and di(2-ethylexyl) phosphoric acid (HDEHP) mixture and show that adding nitric acid enhances synergistic aggregation at the equimolar ratio of the two extractants and that this configuration can be related to a favored enthalpy of mixing.
- Published
- 2016
- Full Text
- View/download PDF
14. Editorial overview
- Author
-
Thomas Zemb, Werner Kunz, Krister Holmberg, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Universität Regensburg (UR), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,Chemistry ,Nanotechnology ,02 engineering and technology ,Surfaces and Interfaces ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Colloid and Surface Chemistry ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2016
- Full Text
- View/download PDF
15. Hydrotropes
- Author
-
Werner Kunz, Krister Holmberg, Thomas Zemb, Universität Regensburg (UR), Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Colloid and Surface Chemistry ,Polymers and Plastics ,[CHIM]Chemical Sciences ,02 engineering and technology ,Surfaces and Interfaces ,Physical and Theoretical Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,0104 chemical sciences - Abstract
International audience
- Published
- 2016
- Full Text
- View/download PDF
16. Weak aggregation: State of the art, expectations and open questions
- Author
-
Werner Kunz, Thomas Zemb, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Universität Regensburg (UR), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,Chemistry ,Interface and colloid science ,Nanotechnology ,02 engineering and technology ,Surfaces and Interfaces ,Inorganic electrolyte ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Organic molecules ,Colloid and Surface Chemistry ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
This paper gives an overview of weak aggregation due to long-range molecular forces beyond the first neighbor. Such subtle self-assemblies are an important part of modern colloidal chemistry and concern organic molecules as well as inorganic electrolytes and hybrid aggregates. Diverse aspects of such colloidal aggregations, as described in this special issue, can be characterized by the effective free energy per molecule involved. We discuss here expectations about emerging knowledge in this field and predictive modeling of inorganic as well as organic colloids and hybrid aggregates. Some still open questions are also given.
- Published
- 2016
- Full Text
- View/download PDF
17. Using ionic liquids to formulate microemulsions: Current state of affairs
- Author
-
Thomas Zemb, Werner Kunz, and Agnes Harrar
- Subjects
Polymers and Plastics ,Chemistry ,Thermodynamics ,Surfaces and Interfaces ,Micelle ,Solvent ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Phase (matter) ,Ionic liquid ,Melting point ,Organic chemistry ,Microemulsion ,Self-assembly ,Physical and Theoretical Chemistry ,Phase diagram - Abstract
Microemulsions are stable mixtures of a polar solvent, surfactant and an unpolar solvent. Ionic liquids (ILs, i.e. salts with melting points below 100 °C) are a huge class of potentially promising solvents. We discuss here published structural or thermodynamic investigations concerning microemulsions in which one or more of the three classical components are ILs. In microemulsions IL can replace respectively the “oil”, the “surfactant” and the “water” phase. Experimental proofs of the existence and stability of microemulsions are given as well as hints at their microstructure. While the four regimes initially defined by Winsor are all accessible, most of the examples of microemulsions containing ionic liquids belong to the class of “rigid” microemulsions. Since additional solutes have characteristic distribution coefficients for each pseudo phase, IL based microemulsions may provide a useful tool for solubilization (reaction medium) and separation, thus allowing the recovery of a large variety of reaction products, but also waste. Further to a discussion of phase diagrams and thermodynamics, we will show some application examples and propose challenges for future studies, in this vast but only emerging domain.
- Published
- 2012
- Full Text
- View/download PDF
18. Hydration forces between bilayers in the presence of dissolved or surface-linked sugars
- Author
-
Thomas Zemb and Bruno Demé
- Subjects
Phase boundary ,Polymers and Plastics ,Chemistry ,Bilayer ,Phospholipid ,Surfaces and Interfaces ,Solvent ,Crystallography ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Adsorption ,Membrane ,Solvation shell ,Orders of magnitude (specific energy) ,Chemical physics ,Physical and Theoretical Chemistry - Abstract
We analyse the experimental evidence of the hydration force near phospholipid bilayers when the “solvent” is a solution of carbohydrates. Two cases must be clearly distinguished: when sugar is dissolved, depletion causes a supplementary attractive force, while in the case of sugar linked to the lipid the contact pressure increases by orders of magnitude. Attractive interaction inferred between bilayers is sometimes derived from indirect evidence, i.e. scattering, attraction between layers adsorbed, shape of phase boundary limits, and without the simultaneous determination of the osmotic compressibility. Generally, water molecules in the first hydration shell of sugar compete with water molecules bound (by more than one kT in free energy) to lipid head-groups. A general result is that the decay length of any repulsive effect remains close to 0.2 nm, even in concentrated sugar solutions. A tentative general explanation of this experimental fact is given together with consequences, such as the possibility of several types of critical points appearing in bilayer stacks. Decay length as well as effective contact pressure is considered with respect to carbohydrate activity.
- Published
- 2011
- Full Text
- View/download PDF
19. Self-assembled structures and chemical reactions in room-temperature ionic liquids
- Author
-
Thomas Zemb and Jingcheng Hao
- Subjects
Polymers and Plastics ,Surfaces and Interfaces ,Micelle ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Chemical engineering ,chemistry ,Ionic liquid ,Lyotropic ,Emulsion ,Amphiphile ,Organic chemistry ,Reactivity (chemistry) ,Microemulsion ,Self-assembly ,Physical and Theoretical Chemistry - Abstract
Amphiphilic association in room-temperature ionic liquids (RT-ILs) — a “green” solvent shows analogies as well as clear differences from self-assembly in water. In this review, we summarize the known features of amphiphilic association structures in the form of micelles, microemulsions, vesicles and lyotropic liquid-crystalline phases in ionic liquids. Most of the methods making use of association to control reactivity could be developed also in RT-ILs and we give a few recently published examples of this strategy.
- Published
- 2007
- Full Text
- View/download PDF
20. Competitive Surface Adsorption of Solvent Molecules and Compactness of Agglomeration in Calcium Hydroxide Nanoparticles
- Author
-
Piero Baglioni, Rodorico Giorgi, Thomas Zemb, Emiliano Fratini, Helmut Cölfen, Miles G. Page, and Bruno Demé
- Subjects
Small-angle X-ray scattering ,Nanoparticle ,Mineralogy ,Surfaces and Interfaces ,Condensed Matter Physics ,Small-angle neutron scattering ,Solvent ,Colloid ,chemistry.chemical_compound ,Adsorption ,chemistry ,Chemical engineering ,Electrochemistry ,Particle ,General Materials Science ,Ethylene glycol ,Spectroscopy - Abstract
Calcium hydroxide forms unstable reactive nanoparticles that are stabilized when they are dispersed in ethylene glycol or 2-propanol. The aggregation behavior of these particles was investigated by contrast-variation small-angle neutron scattering (SANS), combined with small-angle X-ray scattering (SAXS). Nanoparticles on the order of 100 nm were found to aggregate into mass-fractal superstructures in 2-propanol, while forming more compact agglomerated aggregates with surface fractal behavior in ethylene glycol. Commensurate specific surface areas evaluated at the Porod limit were more than an order of magnitude greater in 2-propanol (approximately 200 m2.g(-1)) than in ethylene glycol (approximately 7 m2.g(-1)). This profound microstructural evolution, observed in similar solvents, is shown to arise from competitive solvent adsorption. The composition of the first solvent layer on the particles is determined over the full range of mixed solvent compositions and is shown to follow a quantifiable thermodynamic equilibrium, determined via contrast-variation SANS, that favors ethylene glycol over 2-propanol in the surface layer by about 1.4 kJ.mol(-1) with respect to the bulk solvent composition.
- Published
- 2007
- Full Text
- View/download PDF
21. Synergy in Extraction System Chemistry: Combining Configurational Entropy, Film Bending, and Perturbation of Complexation
- Author
-
Stéphane Pellet-Rostaing, Jacques Jestin, Sandrine Dourdain, Laurence Berthon, J. Rey, Thomas Zemb, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Service de Chimie des Procédés de Séparation (SCPS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO)-Université de Brest (UBO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), and Université de Brest (UBO)-Université de Brest (UBO)
- Subjects
Phosphines ,Entropy ,Iron ,Configuration entropy ,Liquid-Liquid Extraction ,Thermodynamics ,Mole fraction ,Diluent ,Ion ,chemistry.chemical_compound ,fluids and secretions ,Liquid–liquid extraction ,Electrochemistry ,Organic chemistry ,[CHIM]Chemical Sciences ,General Materials Science ,Phosphoric Acids ,Phosphoric acid ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Phosphine oxide ,Chemistry ,Surfaces and Interfaces ,Condensed Matter Physics ,Uranium ,Wetting - Abstract
Iron-uranium selectivity in liquid-liquid extraction depends not only on the mole fraction of extractants, but also on the nature of the diluent used, even if the diluent has no complexation interaction with the extracted ions. Modeling strong nonlinearity is difficult to parametrize without a large number of parameters, interpreted as "apparent constants". We determine in this paper the synergy curve versus mole fraction of HDEHP-TOPO (di(2-ethylexyl) phosphoric acid/tri-n-octyl phosphine oxide) and compare the free energy of aggregation to the free energy of extraction in various diluents. There is always a concomitant maximum of the two quantities, but with a gradual influence on intensity. The diluent is wetting the chains of the reverse aggregates responsible of the extraction. We show here that the intensity of the unexplained synergy peak is strongly dependent on the "penetrating" or "nonpenetrating" nature of the diluent. This experimental determination allows us to attribute the synergy to a combination of entropic effects favoring extraction, opposed to perturbation of the first coordination sphere by penetration as well as surfactant film bending energy.
- Published
- 2015
- Full Text
- View/download PDF
22. Determination of Pore Size of Catanionic Icosahedral Aggregates
- Author
-
Thomas Zemb, Karine Glinel, Gleb B. Sukhorukov, Monique Dubois, and Jean-Marc Verbavatz
- Subjects
Pore size ,Chemistry ,Icosahedral symmetry ,Fluorescence recovery after photobleaching ,Surfaces and Interfaces ,Bending ,Condensed Matter Physics ,law.invention ,Crystallography ,Chemical physics ,law ,Electrochemistry ,General Materials Science ,Electron microscope ,Porosity ,Spectroscopy - Abstract
We show that it is possible to measure the porosity of facetted micron-sized hollow icosahedra of catanionic solutions by performing fluorescence recovery after photobleaching measurements. The size of spontaneous permanent pores in bilayers formed via molecular segregation is compatible with what is observed by freeze-fracture electron microscopy and is discussed versus theoretical expressions of bending energy.
- Published
- 2004
- Full Text
- View/download PDF
23. Equation of State of Self-Assembled Disklike and Icosahedral Crystallites in the Dilute Range
- Author
-
Monique Dubois, Annette Meister, Thomas Zemb, and and Luc Belloni
- Subjects
Chemistry ,Icosahedral symmetry ,Drop (liquid) ,Surfaces and Interfaces ,Condensed Matter Physics ,Effective nuclear charge ,Dilution ,Crystallography ,Lamellar phase ,Chemical physics ,Electrochemistry ,General Materials Science ,Surface charge ,Crystallite ,Spectroscopy ,Order of magnitude - Abstract
The investigation of the dilute range in the system of myristic acid, cetyltrimethylammonium hydroxide, and water shows that the formation of charged catanionic microcrystallites induces measurable osmotic pressures. In the coexistence region between the lamellar phase and the disk phase, we observe a slight osmotic pressure drop, which is due to the crossing of tie lines during dilution. With the application of the Poisson−Boltzmann theory, the surface charge densities of icosahedral and disklike particles are estimated to determine the equation of state of these self-assembled aggregates in the dilute regime. In typical conditions, a hollow crystallite of 1-μm diameter has an effective charge on the order of 1.8 × 106, while the structural charge is 1 order of magnitude larger.
- Published
- 2003
- Full Text
- View/download PDF
24. Self-assembly: weak and specific intermolecular interactions at work
- Author
-
Alfred Blume and Thomas Zemb
- Subjects
Work (thermodynamics) ,Colloid and Surface Chemistry ,Polymers and Plastics ,Chemistry ,Chemical physics ,Intermolecular force ,Surfaces and Interfaces ,Self-assembly ,Physical and Theoretical Chemistry - Published
- 2003
- Full Text
- View/download PDF
25. Periodic precipitation patterns during coalescence of reacting sessile droplets
- Author
-
Marie Jehannin, Helmuth Möhwald, Sophie Charton, Stefan Karpitschka, Thomas Zemb, Hans Riegler, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département de Technologies du Cycle du combustible (DTEC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute of Colloids and Interfaces, Max-Planck-Gesellschaft, and Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Marangoni effect ,Precipitation (chemistry) ,Inorganic chemistry ,Oxalic acid ,Mixing (process engineering) ,02 engineering and technology ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Cerium nitrate ,Surface tension ,chemistry.chemical_compound ,chemistry ,Chemical physics ,0103 physical sciences ,Electrochemistry ,[CHIM]Chemical Sciences ,General Materials Science ,Coalescence (chemistry) ,010306 general physics ,0210 nano-technology ,Cerium oxalate ,ComputingMilieux_MISCELLANEOUS ,Spectroscopy - Abstract
The coalescence behavior of two sessile drops that contain different chemical reactants (cerium nitrate and oxalic acid) and its impact on the formation of the solid precipitate (cerium oxalate) are investigated. With different liquids, the surface tension difference in the moment of drop-drop contact can induce a Marangoni flow. This flow can strongly influence the drop-drop coalescence behavior and thus, with reacting liquids, also the reaction and its products (through the liquid mixing). In our study we find three distinctly different coalescence behaviors ("barrier", "intermediate", "noncoalescence"), in contrast to only two behaviors that were observed in the case of nonreacting liquids. The amount of liquid mixing and thus the precipitation rate are very different for the three cases. The "intermediate" case, which exhibits the strongest mixing, has been studied in more detail. For high oxalic acid concentrations, mainly needle-like aggregates, and for low concentrations, mainly flower-like precipitate morphologies are obtained. In a transition range of the oxalic acid concentration, both morphologies can be produced. With the applied coalescence conditions, the different aggregate particles are arranged and fixed in a precipitate raft in a regular, periodic line pattern. This confirms the drop-drop coalescence configuration as a convection-reaction-diffusion system, which can have stationary as well as oscillatory behavior depending on the system parameters.
- Published
- 2015
- Full Text
- View/download PDF
26. Giant Collective Fluctuations of Charged Membranes at the Lamellar-to-Vesicle Unbinding Transition. 2. Equation of State in the Absence of Salt
- Author
-
Bruno Demé, Monique Dubois, and Thomas Zemb
- Subjects
Equation of state ,Range (particle radiation) ,Condensed matter physics ,Chemistry ,Vesicle ,Shell (structure) ,Thermodynamics ,Surfaces and Interfaces ,Condensed Matter Physics ,Condensed Matter::Soft Condensed Matter ,Membrane ,Electrochemistry ,medicine ,Osmotic pressure ,General Materials Science ,Lamellar structure ,Swelling ,medicine.symptom ,Spectroscopy - Abstract
The equation of state of a charged phospholipid (dioleoylphosphatidylserine: DOPS, Na+) in the absence of added salt is given at room temperature over six decades of osmotic pressure (100 to 2 × 108 Pa) covering the range of pressures where the different structures described previously have been observed.1 It is compared to the universal expression given by the Langmuir equation and predictions for the Gouy−Chapman regime for highly charged bilayers. Below membrane separations of 10 A, the pressure of solid supported DOPS films is higher than the prediction of the Langmuir equation. In the linear swelling regime of flat bilayers and up to the regime where giant correlated fluctuations are present (the oyster shell state), the Langmuir equation holds better than the prediction given by Attard et al.2 for the Gouy−Chapman regime. Close to maximum swelling (700 A), the pressure drops sharply. However, the universal power-law decay still holds in the unbinding regime, where the oyster shell state coexists wi...
- Published
- 2001
- Full Text
- View/download PDF
27. Giant Collective Fluctuations of Charged Membranes at the Lamellar-to-Vesicle Unbinding Transition. 1. Characterization of a New Lipid Morphology by SANS, SAXS, and Electron Microscopy
- Author
-
Thaddée Gulik-Krzywicki, Bruno Demé, Monique Dubois, and Thomas Zemb
- Subjects
Chemistry ,Small-angle X-ray scattering ,Vesicle ,Surfaces and Interfaces ,Condensed Matter Physics ,law.invention ,Crystallography ,Membrane ,Lamellar phase ,Chemical physics ,law ,Electrochemistry ,Intermediate state ,General Materials Science ,Lamellar structure ,Texture (crystalline) ,Electron microscope ,Spectroscopy - Abstract
We show the existence of a new and unexpected morphology of charged phospholipid membranes composed of pure dioleoylphosphatidylserine (DOPS, Na+) in the absence of added salt. This new morphology is characterized by giant collective fluctuations of locally lamellar stacks of membranes at the lamellar-to-vesicle unbinding transition. The DOPS dispersions have been studied in pure water and at rest using complementary techniques: small-angle scattering (neutron and X-ray) and freeze-fracture electron microscopy. In the present case of strong unscreened electrostatic interaction, we show that the order-to-disorder transition associated with the lamellar phase unbinding into vesicles is hidden by the presence of this intermediate state of strongly coupled undulating membranes where electrostatic and entropic forces compete. The giant collective fluctuations produce a texture analogous to that of an oyster shell as observed by freeze-fracture electron microscopy. Three microstructures are encountered along t...
- Published
- 2001
- Full Text
- View/download PDF
28. Self-assembly under the influence of weak or long-range forces
- Author
-
Thomas Zemb and Mario Corti
- Subjects
Range (particle radiation) ,Colloid and Surface Chemistry ,Materials science ,Polymers and Plastics ,Chemical physics ,Surfaces and Interfaces ,Self-assembly ,Physical and Theoretical Chemistry - Published
- 2000
- Full Text
- View/download PDF
29. Phase Equilibria and Equation of State of a Mixed Cationic Surfactant−Glycolipid Lamellar System
- Author
-
Isabelle Rico-Lattes, Luc Belloni, Thomas Zemb, Christiane André-Barrès, Monique Dubois, and Florence Ricoul
- Subjects
Equation of state ,Ternary numeral system ,Stereochemistry ,Chemistry ,Cationic polymerization ,Thermodynamics ,Surfaces and Interfaces ,Condensed Matter Physics ,Pulmonary surfactant ,Phase (matter) ,Electrochemistry ,General Materials Science ,Lamellar structure ,Ternary operation ,Spectroscopy ,Phase diagram - Abstract
We establish experimentally the equation of state relating pressure and composition of a ternary model glycolipid/synthetic cationic surfactant/water system at room temperature. It is shown that an adhesion energy induced by the sugar headgroups is necessary to explain the presence of two distinct critical points that close two biphasic lamellar−lamellar zones. Between these two critical points, a turbid single-phase region is evidenced.
- Published
- 1998
- Full Text
- View/download PDF
30. Self-assembly of fatty acids in the presence of amines and cationic components
- Author
-
Thomas Zemb, Anne-Laure Fameau, Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de la Recherche Agronomique (INRA), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Molar ratio ,Surface Properties ,Drug Compounding ,Lipid Bilayers ,Fatty Acids, Nonesterified ,Fatty acid self-assembly ,Colloid ,Drug Delivery Systems ,Colloid and Surface Chemistry ,Pulmonary surfactant ,Cations ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,Counter-ion ,Organic chemistry ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Colloids ,Surface charge ,Amines ,Physical and Theoretical Chemistry ,chemistry.chemical_classification ,Component (thermodynamics) ,Cationic polymerization ,Surfaces and Interfaces ,Catanionic system ,Elasticity ,Kinetics ,Models, Chemical ,chemistry ,Chemical engineering ,Emulsions ,Amine gas treating ,Self-assembly ,Counterion ,Hydrophobic and Hydrophilic Interactions - Abstract
International audience; Fatty acids can self-assemble under various shapes in the presence of amines or cationic components. We assemble and compare these types of self-assembly leading toward a catanionic system either with a cationic surfactant or with an amine component playing the role of counter-ion. First, we focus on the molar ratio as a key driving parameter. Known and yet un-known values from other quantities governing the colloidal properties of these systems such as structural surface charge, osmotic pressure, molecular segregation, rigidity, in plane colloidal interactions and melting transition are discussed. We include also recent results obtained on the interfacial and foaming properties of these systems. We will highlight the specificity of these self-assemblies leading to unusual macroscopic properties rich of robust applications.
- Published
- 2014
- Full Text
- View/download PDF
31. Synergism by Coassembly at the Origin of Ion Selectivity in Liquid–Liquid Extraction
- Author
-
Thomas Zemb, Sandrine Dourdain, Jacques Jestin, Jean-François Dufrêche, Antoine Leydier, O. Pecheur, Raphaël Turgis, I. Hofmeister, Stéphane Pellet-Rostaing, Fabienne Testard, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Modélisation Mésoscopique et Chimie Théorique (LMCT), Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université de Bretagne Sud (UBS)-Institut Brestois du Numérique et des Mathématiques (IBNM), and Université de Brest (UBO)-Université de Brest (UBO)-Université de Brest (UBO)
- Subjects
Chemistry ,Dodecane ,Small-angle X-ray scattering ,02 engineering and technology ,Surfaces and Interfaces ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Ion ,Solvent ,chemistry.chemical_compound ,Chemical engineering ,Liquid–liquid extraction ,Phase (matter) ,Electrochemistry ,Organic chemistry ,[CHIM]Chemical Sciences ,General Materials Science ,0210 nano-technology ,Selectivity ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Phase diagram - Abstract
In liquid-liquid extraction, synergism emerges when for a defined formulation of the solvent phase, there is an increase of distribution coefficients for some cations in a mixture. To characterize the synergistic mechanisms, we determine the free energy of mixed coassembly in aggregates. Aggregation in any point of a phase diagram can be followed not only structurally by SANS, SAXS, and SLS, but also thermodynamically by determining the concentration of monomers coexisting with reverse aggregates. Using the industrially used couple HDEHP/TOPO forming mixed reverse aggregates, and the representative couple U/Fe, we show that there is no peculiarity in the aggregates microstructure at the maximum of synergism. Nevertheless, the free energy of aggregation necessary to form mixed aggregates containing extracted ions in their polar core is comparable to the transfer free energy difference between target and nontarget ions, as deduced from the synergistic selectivity peak.
- Published
- 2012
- Full Text
- View/download PDF
32. Liquid Interface Functionalized by an Ion Extractant: The Case of Winsor III Microemulsions
- Author
-
Caroline Bauer, Olivier Diat, Pierre Bauduin, Thomas Zemb, Ions aux Interfaces Actives (L2IA), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Dodecane ,Inorganic chemistry ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Ion ,n-octyl-β-glucopyranoside (C8G1) ,chemistry.chemical_compound ,Colloid ,020401 chemical engineering ,Electrochemistry ,salt ,General Materials Science ,Microemulsion ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0204 chemical engineering ,Solubility ,Spectroscopy ,Alkyl ,chemistry.chemical_classification ,Chromatography ,Surfaces and Interfaces ,Condensed Matter Physics ,microemulsion ,Spent nuclear fuel ,0104 chemical sciences ,Phase diagram ,chemistry ,Energy source ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,tributylphosphate (TBP) - Abstract
International audience; The present work shows for the first time that tributylphosphate (TBP), the major ion extractant used in thereprocessing of spent nuclear fuel, acts efficiently as a cosurfactant in the formation of three-phase microemulsions.The system is composed of water, dodecane, TBP, and an extremely hydrophilic sugar surfactant, n-octyl-β-glucoside.The investigation of the three-phase region (Winsor III), the so-called “fish-cut” diagrams, revealed that TBP exhibitscosurfactant behavior comparable to that of classical cosurfactants n-pentanol and n-hexanol. Upon increasing thecosurfactant/surfactant molar ratio, TBP appears to be more efficient than single-chain alcohols in raising thespontaneous curvature of the adsorbed surfactant film toward oil. This is a direct consequence of the different lateralpacking of TBP and n-pentanol or n-hexanol in the mixed surfactant film, with TBP having three alkyl chains and so ahigher hydrophobic volume than those n-alcohols. This property is underlined by the interfacial film composition, whichis determined by the chemical analysis of the excess phases. It gives a surfactant to cosurfactant molar ratio of 1:1 forTBP and 1:3 for n-hexanol. Moreover, the local microstructure of the microemulsion becomes dependent on theaddition of salt when n-alcohol is replaced by TBP. A specific salt effect is also observed and rationalized in terms of thecomplexing property of TBP and Hofmeister’s effects. Treatment of the small-angle neutron scattering (SANS) datagives access to (i) the length scales characterizing the microemulsions (i.e., the persistence length, ξ, and aqueous ororganic domain sizes, D*) and (ii) the specific surface, Σ. It results that a subtle change is highlighted in the TBPmicroemulsion structure, in terms of connectivity, according to the type of salt added.
- Published
- 2011
- Full Text
- View/download PDF
33. [emim][etSO4] as the polar phase in low-temperature-stable microemulsions
- Author
-
Werner Kunz, Robert Hartl, Thomas Zemb, Agnes Harrar, Oliver Zech, and Pierre Bauduin
- Subjects
Ternary numeral system ,Chromatography ,Small-angle X-ray scattering ,Surfaces and Interfaces ,Atmospheric temperature range ,Condensed Matter Physics ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,Liquid crystal ,Phase (matter) ,Ionic liquid ,Electrochemistry ,Polar ,General Materials Science ,Microemulsion ,Spectroscopy - Abstract
We demonstrate here that microemulsions with an IL as the continuous phase can be formed so that they are stable over a wide temperature range and have intermediary properties between flexible and stiff microemulsions. Three components (1-ethyl-3-methylimidazolium ethylsulfate ([emim][etSO(4)]), limonene, and octylphenol ethoxylate (Triton X 100, abbreviated as TX-100)) were used. This ternary system has been characterized from ambient temperature down to -10 °C by means of conductivity, viscosity, and small-angle X-ray scattering (SAXS) measurements. The SAXS data exhibit a characteristic single, broad scattering peak in conjunction with a typical q(-4) decay at large q values. The SAXS data have also been interpreted in terms of a dimensionless dilution plot, demonstrating that microstructures are neither isolated droplets nor a random flexible film structure but resemble molten liquid crystals (i.e., they are formed from locally cylindrical or planar structures). This semirigidity is attributed to a good match between the surfactant and the ionic liquid; this holds in a temperature range well below 0 °C.
- Published
- 2011
34. Lamellar to vesicle transitions to highly charged bilayers
- Author
-
Thomas Zemb, Barry W. Ninham, E. Z. Radlinska, and J. P. Dalbiez
- Subjects
Phase transition ,Chromatography ,Chemistry ,Bilayer ,Vesicle ,Surfaces and Interfaces ,Condensed Matter Physics ,Small-angle neutron scattering ,Chemical physics ,Electrochemistry ,Surface structure ,General Materials Science ,Lamellar structure ,Spectroscopy ,Phase diagram - Published
- 1993
- Full Text
- View/download PDF
35. Ripening of catanionic aggregates upon dialysis
- Author
-
Luc Belloni, Clarisse Mariet, Mélanie Moskura, Patrick Berthault, Youlia Michina, Thomas Zemb, and David Carriere
- Subjects
Chromatography ,Morphology (linguistics) ,Time Factors ,Chemistry ,Surface Properties ,Vesicle ,Inorganic chemistry ,Fatty Acids ,Cationic polymerization ,Halide ,Surfaces and Interfaces ,Condensed Matter Physics ,High-performance liquid chromatography ,Ion ,Quaternary Ammonium Compounds ,Surface-Active Agents ,Pulmonary surfactant ,Cations ,Electrochemistry ,General Materials Science ,Particle Size ,Dialysis (biochemistry) ,Dialysis ,Spectroscopy ,Micelles - Abstract
We have studied the dialysis of surfactant mixtures of two oppositely charged surfactants (catanionic mixture) by combining HPLC, neutron activation, confocal microscopy, and NMR. In mixtures of n-alkyl trimethylammonium halides and n-fatty acids, we have demonstrated the existence of a specific ratio between both surfactant contents (anionic/cationic almost equal to 2:1) that determines the morphology, the elimination of ions, and the elimination of the soluble cationic surfactant upon dialysis. In mixtures prepared with lower anionic surfactant contents, ill-defined aggregates are formed, and dialysis quickly eliminates the ion pairs (H+X-) formed upon surfactant association and also the cationic surfactant until a limiting 2:1 ratio is reached. By contrast, mixtures prepared above the anionic/cationic 2:1 ratio form micrometer-sized vesicles resistant to dialysis. These closed aggregates retain a significant number of ions (30%) over 1000 hours, and dialysis is unable to eliminate the soluble surfactant. The interactions between surfactants have been estimated by measuring the partitioning of the CTA molecules between the catanionic bilayer, the bulk solution, and mixed micelles when they exist. The mean extraction free energy per CTA in the membrane has been found to increase by 1 kBT to 2 kBT as the soluble surfactant is depleted from the bilayer, which is enough to stop the dialysis. The vesicles produced above the anionic/cationic 2:1 ratio are formed by frozen bilayers and are resistant to extensive dialysis and therefore show an interesting potential for encapsulation as far as durability is concerned.
- Published
- 2009
36. Ionic liquid tunes microemulsion curvature
- Author
-
Liping Liu, Jingcheng Hao, Thomas Zemb, Julian Eastoe, and Pierre Bauduin
- Subjects
Heptane ,Chromatography ,Small-angle X-ray scattering ,Analytical chemistry ,Surfaces and Interfaces ,Electrolyte ,Condensed Matter Physics ,Small-angle neutron scattering ,chemistry.chemical_compound ,chemistry ,Pulmonary surfactant ,Ionic liquid ,Emulsion ,Electrochemistry ,General Materials Science ,Microemulsion ,Spectroscopy - Abstract
Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems.
- Published
- 2009
37. Structural study of microemulsion-based gels at the saturation point
- Author
-
Christophe Petit, Thomas Zemb, and Marie-Paule Pileni
- Subjects
Chemistry ,Electrochemistry ,Analytical chemistry ,General Materials Science ,Microemulsion ,Surfaces and Interfaces ,Condensed Matter Physics ,Spectroscopy - Published
- 1991
- Full Text
- View/download PDF
38. Correspondence between curvature, packing parameter, and hydrophilic-lipophilic deviation scales around the phase-inversion temperature
- Author
-
Werner Kunz, Fabienne Testard, and Thomas Zemb
- Subjects
Quantitative Biology::Biomolecules ,Chemistry ,Mathematical analysis ,Thermodynamics ,Single parameter ,Surfaces and Interfaces ,Bending ,Condensed Matter Physics ,Curvature ,Surface energy ,Condensed Matter::Soft Condensed Matter ,Solubilization ,Electrochemistry ,Compressibility ,General Materials Science ,Equivalence (measure theory) ,Spectroscopy ,Phase inversion - Abstract
We show in this paper that three ways of characterizing “spontaneous” lateral packing of amphiphiles are equivalent: the spontaneous curvature, the molecular packing parameter, and the refined hydrophilic−lipophilic balance known as HLD (hydrophilic−lipophilic deviation). Recognition of this equivalence, with its underlying hypothesis of incompressible fluid with lowest surface energy, reinforces the single parameter bending energy expression implicit in the classical papers by Ninham and Israelachvili, as well as all the predictive models of solubilization developed as yet.
- Published
- 2008
39. Electrostastic Control of Spontaneous Curvature in Catanionic Reverse Micelles
- Author
-
Steen Hansen, Isabelle Grillo, Fabienne Testard, Lise Arleth, Thomas Zemb, Benjamin Abécassis, Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), and ILL
- Subjects
Phase transition ,Chemistry ,Stereochemistry ,02 engineering and technology ,Surfaces and Interfaces ,Neutron scattering ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Curvature ,01 natural sciences ,Micelle ,Small-angle neutron scattering ,0104 chemical sciences ,Pulmonary surfactant ,Chemical physics ,Electrochemistry ,General Materials Science ,Microemulsion ,Surface charge ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS - Abstract
By means of small-angle neutron scattering and conductivity measurements, we study the microstructure of octylammoniumoctanoate/octane/water catanionic reverse microemulsions with an excess of anionic or cationic surfactant. Increasing the surface charge makes the microemulsion able to incorporate much more water than in the neutral case, up to 10 water molecules per surfactant. Even with charges in the surfactant film, wormlike micelles are present in the microemulsion domain. Along water dilution lines, the classical rod-to-sphere transition due to the minimization of the curvature energy of the rigid surfactant film is observed. When temperature is decreased, a re-entrant phase transition associated with the liquid-gas equilibrium of attractive cylinders is observed. Using the framework of the Tlusty-Safran theory, attraction could originate from junctions between wormlike reverse micelles. In any case, the spontaneous curvature of the catanionic surfactant film depends on both the temperature and the net charge, whatever the sign of the latter.
- Published
- 2007
- Full Text
- View/download PDF
40. Ion exchange in catanionic mixtures: from ion pair amphiphiles to surfactant mixtures
- Author
-
Thomas Zemb, Luc Belloni, David Carriere, and Eva Maurer
- Subjects
chemistry.chemical_classification ,Chromatography ,Ion exchange ,Surfaces and Interfaces ,Condensed Matter Physics ,Ion ,chemistry.chemical_compound ,chemistry ,Pulmonary surfactant ,Lamellar phase ,Phase (matter) ,Saturated fatty acid ,Electrochemistry ,Physical chemistry ,Hydroxide ,General Materials Science ,Counterion ,Spectroscopy - Abstract
We have studied concentrated equimolar mixtures of tetradecanoic acid (myristic acid, C13COOH) and hexadecyltrimethylammonium hydroxide (CTAOH) in which the OH- counterions are gradually exchanged by other anions (Cl-, Br-, CH3COO-, CH3-(C6H4)-SO3-). We demonstrate that the stability of a Lbeta phase can be achieved at equimolarity between both surfactants, provided that the phase contains also a sufficient number of anions exchanged with OH-. In the absence of exchange (equimolar mixture of C13COOH and CTAOH), a three-dimensional crystalline Lc phase is produced. As the OH- ions are replaced by other ions, a swollen Lbeta lamellar phase appears, first in coexistence with the Lc (D* = 400 A) and then in coexistence with a dilute phase only (D* = 215 A). In the latter regime, the repeating distance depends very little on the exchange ratio, but rather on the nature of the counterion. If too many OH- ions are exchanged, the Lbeta phase becomes unstable again. A Poisson-Boltzmann model with charge regulation computed for a closed system predicts qualitatively the existence of this narrow domain of stability for the Lbeta phase.
- Published
- 2007
41. Phase Behavior, Topology, and Growth of Neutral Catanionic Reverse Micelles
- Author
-
Benjamin Abécassis, Fabienne Testard, Thomas Zemb, Lise Arleth, Steen Hansen, Isabelle Grillo, Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685), Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut Laue-Langevin (ILL), ILL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Anions ,Stereochemistry ,02 engineering and technology ,010402 general chemistry ,Branching (polymer chemistry) ,01 natural sciences ,Micelle ,Phase Transition ,Surface-Active Agents ,chemistry.chemical_compound ,Pulmonary surfactant ,Cations ,Electrochemistry ,General Materials Science ,Microemulsion ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Micelles ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Octane ,Phase diagram ,Ternary numeral system ,Microchemistry ,Temperature ,Water ,Surfaces and Interfaces ,Octanes ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Quaternary Ammonium Compounds ,chemistry ,Chemical physics ,Emulsions ,0210 nano-technology ,Ternary operation - Abstract
The ternary catanionic system octylammoniumoctanoate/octane/water is studied by combined SANS, light scattering, conductivity, and phase diagram approach in the water-poor microemulsion region. The sphere-to-cylinder growth and branching depends on the concentration, the water-to-surfactant ratio, and the temperature. The unidimensional growth leads to a network of interconnected wormlike micelles. Like most studied linear nonionic surfactants, in this true catanionic system at equimolarity of anionic and cationic surfactant, the curvature toward water increases with temperature, making connections between cylinders less frequent.
- Published
- 2006
- Full Text
- View/download PDF
42. Effect of recognized and unrecognized salt on the self-assembly of new thermosensitive metal-chelating surfactants
- Author
-
Thomas Zemb, Helene Coulombeau, Chantal Larpent, and Fabienne Testard
- Subjects
Models, Molecular ,Metal ions in aqueous solution ,Micelle ,Polyethylene Glycols ,Metal ,Surface-Active Agents ,Amphiphile ,Polymer chemistry ,Electrochemistry ,Organic chemistry ,General Materials Science ,Chelation ,Spectroscopy ,Alkyl ,Micelles ,chemistry.chemical_classification ,Ligand ,Chemistry ,Lysine ,Surfaces and Interfaces ,Condensed Matter Physics ,Covalent bond ,visual_art ,Uranyl Nitrate ,visual_art.visual_art_medium ,Lithium Compounds ,Thermodynamics - Abstract
New functional thermoreversible metal complexing surfactants consisting of a chelating amino acid residue grafted to the tip of a nonionic surfactant [alkyl poly(oxyethylene) CiEj] or in a branched position are studied. Nonionic surfactants are thermoreversible and exhibit a clouding phenomenon associated with phase separation of micelles. The functional molecules retain both the surface-active properties and the characteristic thermoreversible behavior. Because of the hydrophilic contribution of the chelating group (acetyl lysine), the cloud point and the area at the air-water interface are higher for functional surfactants than for nonionic precursors. These new surfactants have efficient complexing properties toward metal ions and are more efficient than the mixture of the corresponding nonionic surfactant and the acetyl lysine ligand solubilized in micelles. This reveals the synergistic effect obtained by the covalent link between the two functions. Addition of a bulky group on classical amphiphilic structures modifies markedly the packing constraints at the origin ofmicellar structures. Small-angle X-ray or neutron scattering results, modeled jointly on the absolute scale, demonstrate the influence of unrecognized lithium nitrate (LiNO3) as well as specifically recognized uranyl nitrate [UO2(NO3)2] salts on micellar structure and phase boundaries. The determination of the micellar shape variations induced by a recognized salt, that is, a decrease of the polar headgroup, allows the rationalization of uncommon synergistic effects on the cloud point variation: increase with lithium nitrate, no decrease in the presence of uranyl nitrate, and a very large decrease when these two salts are present together.
- Published
- 2005
43. Editorial overview: Hydration forces
- Author
-
V. Adrian Parsegian and Thomas Zemb
- Subjects
Colloid and Surface Chemistry ,Materials science ,Polymers and Plastics ,Surfaces and Interfaces ,Physical and Theoretical Chemistry - Published
- 2011
- Full Text
- View/download PDF
44. Osmotic Equilibrium between an Ionic Magnetic Fluid and an Electrostatic Lamellar Phase
- Author
-
Monique Dubois, Thadeus Gulik-Krzywicki, Valérie Cabuil, Christine Ménager, Thomas Zemb, Luc Belloni, Liquides Ioniques et Interfaces Chargées (LI2C), Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Service de Chimie Moléculaire (SCM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Ménager, Christine
- Subjects
[CHIM.INOR] Chemical Sciences/Inorganic chemistry ,Ionic bonding ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Lamellar phase ,Electrochemistry ,Osmotic pressure ,General Materials Science ,Lamellar structure ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Phase diagram ,Chromatography ,Aqueous solution ,Chemistry ,Surfaces and Interfaces ,musculoskeletal system ,equipment and supplies ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Charged particle ,0104 chemical sciences ,[PHYS.COND.CM-SCM] Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Chemical physics ,Magnetic nanoparticles ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
We describe the preparation of a “stiff” ferrosmectic. The domain of composition for which charged magnetic nanoparticles are included inside the aqueous layers of an Lα structure is narrow. This result is explained in terms of osmotic pressure equilibrium. Identification of biphasic regions allows the construction of the water corner of the phase diagram.
- Published
- 1996
45. Glycolipid self-assembly: micellar structure
- Author
-
Bonaventura. Focher, Christine Cecutti, Bruno. Perly, Thomas Zemb, Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Consiglio Nazionale delle Ricerche [Milano] (CNR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Consiglio Nazionale delle Ricerche - CNR (ITALY), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), and Université de Toulouse (UT)
- Subjects
Chemistry ,Stereochemistry ,fungi ,02 engineering and technology ,Surfaces and Interfaces ,Glycolipid ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Micelle ,0104 chemical sciences ,Crystallography ,Autre ,Micellar Structure ,Electrochemistry ,General Materials Science ,Self-assembly ,sense organs ,Small-angle scattering ,0210 nano-technology ,[CHIM.OTHE]Chemical Sciences/Other ,Spectroscopy ,Phase diagram - Abstract
International audience; Small-angle scattering is used to investigate a typical glycolipid micelle structure in conjunction with NMR determination of sugar cycle conformation. It is shown that the ellipsoidal shape of the micelle originates from two constraints: sugar rings perpendicular to the interface induce a limited area at the chain-head interface. Together with the bulky hydrated heads, this imposes an ellipsoidal shape.
- Published
- 1991
- Full Text
- View/download PDF
46. Small-angle scattering study of TAC8: A surfactant with cation complexing potential
- Author
-
Lise Arleth, Didier Gazeau, Dorthe Posselt, Chantal Larpent, Jan Skov Pedersen, Kell Mortensen, and Thomas Zemb
- Subjects
Chemistry ,Small-angle X-ray scattering ,Scattering ,Stereochemistry ,Scattering length ,Surfaces and Interfaces ,Neutron scattering ,Condensed Matter Physics ,Small-angle neutron scattering ,Micelle ,Electrochemistry ,Molecule ,Physical chemistry ,General Materials Science ,Small-angle scattering ,Spectroscopy - Abstract
TAC8 is a new surfactant molecule. Two octyl chains form the hydrophobic part of the molecule whereas the hydrophilic part is made of two glucose groups and a cyclam ring, which gives the molecule a potential for complexing metal ions or compounds. Aqueous solutions of pure TAC8 and of TAC8 with equimolar complexed CuF2 are studied using small-angle neutron and X-ray scattering. The shape and dimensions of the micelles are determined from the scattering data using two different approaches. The first approach is model independent and uses indirect Fourier transformation of the scattering data followed by square-root deconvolution of the obtained pair-distance distribution function in order to determine the scattering length density profile. In the second approach a molecular constrained model of the micelles is fitted to the X-ray and neutron scattering data simultaneously. The results of these two different approaches agree very well. The analysis shows that both the pure TAC8 and the TAC8 with complexed ...
47. Depletion forces in single phase and multi-phase complex fluids
- Author
-
Peter A. Kralchevsky, Thomas Zemb, Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM), Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Sofia University 'St.Kliment Ohridski', Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Sofia University 'St. Kliment Ohridski'
- Subjects
Polymers and Plastics ,Multi phase ,Chemistry ,02 engineering and technology ,Surfaces and Interfaces ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Colloid and Surface Chemistry ,Chemical physics ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,Single phase ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Complex fluid - Abstract
International audience
- Full Text
- View/download PDF
48. Morphological Transition in Fatty Acid Self-Assemblies: A Process Driven by the Interplay between the Chain-Melting and Surface-Melting Process of the Hydrogen Bonds
- Author
-
Fabrice Cousin, Arnaud Saint-Jalmes, Anne-Laure Fameau, Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de la Recherche Agronomique (INRA), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), The authors gratefully acknowledge the Laboratoire Léon Brillouin (LLB) for the allocation of neutron beam time on the spectrometer PAXY. We thank Dr. Cédric Gaillard and Bérénice Houinsou-Houssou for their help with the microscopy experiments, and Romain Derrien for help with the rheological experiments. We also thank Bruno Pontoire for his help with the WAXS experiments. Additionally, we acknowledge Dr. Thomas Zemb and Dr. Jean-Paul Douliez for the useful discussions., Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
inorganic chemicals ,Supramolecular chemistry ,molar ratio ,chain melting ,02 engineering and technology ,Neutron scattering ,010402 general chemistry ,01 natural sciences ,Micelle ,Differential scanning calorimetry ,Pulmonary surfactant ,Electrochemistry ,Organic chemistry ,General Materials Science ,Spectroscopy ,Alkyl ,Lipid tubes ,counter-ion ,chemistry.chemical_classification ,[PHYS]Physics [physics] ,Hydrogen bond ,Foams ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Chemical engineering ,chemistry ,hydrogen bonds ,Counterion ,0210 nano-technology ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
International audience; In surfactant systems, the major role of the nature of the counter-ion on the surfactant behavior is well-known. However, the effect of the molar ratio between the surfactant and its counter-ion is less explored in the literature. We investigated the effect of the molar ratio (R) between 12-hydroxystearic acid (12-HSA) and various alkanolamines as a function of the temperature in aqueous solution from the molecular scale to the mesoscale. By coupling microscopy techniques and small angle neutron scattering, we showed that 12-HSA self-assembled into multilamellar tubes and transitioned into micelles at a precise temperature. This temperature transition depended on both the molar ratio and the alkyl chain length of the counter-ion and could be precisely tuned from 20°C to 75°C. This thermal behaviour was investigated by differential scanning calorimetry and wide angle X-ray scattering. We highlighted that the transition at the supramolecular scale between tubes to micelles came from two different mechanisms at the molecular scale as a function of the molar ratio. At low R, with an excess of counter-ion, the transition came from the chain melting phenomenon. At high R, with an excess of 12-HSA, the transition came from both the chain melting process and the surface melting process of the hydrogen bonds. At the mesoscale, this transition of supramolecular assemblies from tubes to micelles, delimited a regime of high bulk viscosity, with a regime of low viscosity.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.