Back to Search Start Over

Molecular Forces in Liquid–Liquid Extraction

Authors :
Jean-François Dufrêche
Mario Špadina
Stjepan Marčelja
Thomas Zemb
Stéphane Pellet-Rostaing
Ruđer Bošković Institute (IRB)
Faculty of Health Sciences, University of Ljubljana
Modélisation Mésoscopique et Chimie Théorique (LMCT)
Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257)
Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM)
Australian National University (ANU)
ANR-18-CE29-0010,MULTISEPAR,Modelisation multi-échelle des phases organiques pour l'extraction liquid-liquide(2018)
European Project: 320915,EC:FP7:ERC,ERC-2012-ADG_20120216,REE-CYCLE(2013)
University of Ljubljana
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Langmuir, Langmuir, American Chemical Society, In press, ⟨10.1021/acs.langmuir.1c00673⟩, Langmuir, 2021, 37 (36), pp.10637-10656. ⟨10.1021/acs.langmuir.1c00673⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; The phase transfer of ions is driven by gradients of chemical potentials rather than concentrations alone (i.e., by both the molecular forces and entropy). Extraction is a combination of high-energy interactions that correspond to short-range forces in the first solvation shell such as ion pairing or complexation forces, with supramolecular and nanoscale organization. While the latter are similar to the long-range solvent-averaged interactions in the colloidal world, in solvent extraction they are associated with lower characteristic lengths of the nanometric domain. Modeling of such complex systems is especially complicated because the two domains are coupled, whereas the resulting free energy of extraction is around kBT to guarantee the reversibility of the practical process. Nevertheless, quantification is possible by considering a partitioning of space among the polar cores, interfacial film, and solvent. The resulting free energy of transfer can be rationalized by utilizing a combination of terms which represent strong complexation energies, counterbalanced by various entropic effects and the confinement of polar solutes in nanodomains dispersed in the diluent, together with interfacial extractant terms. We describe here this ienaics approach in the context of solvent extraction systems; it can also be applied to further complex ionic systems, such as membranes and biological interfaces.

Details

Language :
English
ISSN :
07437463 and 15205827
Database :
OpenAIRE
Journal :
Langmuir, Langmuir, American Chemical Society, In press, ⟨10.1021/acs.langmuir.1c00673⟩, Langmuir, 2021, 37 (36), pp.10637-10656. ⟨10.1021/acs.langmuir.1c00673⟩
Accession number :
edsair.doi.dedup.....5dc78ff38b63fbdebb299b8ce7fca3d7
Full Text :
https://doi.org/10.1021/acs.langmuir.1c00673⟩