Back to Search Start Over

Thermodynamic Description of Synergy in Solvent Extraction: II Thermodynamic Balance of Driving Forces Implied in Synergistic Extraction

Authors :
Michael Bley
Sandrine Dourdain
J. Rey
Stéphane Pellet-Rostaing
Simon Gourdin
Jean-François Dufrêche
Thomas Zemb
Tri ionique par les Systèmes Moléculaires auto-assemblés (LTSM)
Institut de Chimie Séparative de Marcoule (ICSM - UMR 5257)
Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Modélisation Mésoscopique et Chimie Théorique (LMCT)
Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
ANR-10-LABX-0005,CheMISyst,CHEmistry of Molecular and Interfacial Systems(2010)
European Project: 320915,EC:FP7:ERC,ERC-2012-ADG_20120216,REE-CYCLE(2013)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Langmuir, Langmuir, American Chemical Society, 2017, 33 (46), pp.13168-13179. ⟨10.1021/acs.langmuir.7b02068⟩, Langmuir, 2017, 33 (46), pp.13168-13179. ⟨10.1021/acs.langmuir.7b02068⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; In the second part of this study, we analyze the free energy of transfer in the case of synergistic solvent extraction. This free energy of the transfer of an ion in dynamic equilibrium between two coexisting phases is decomposed into four driving forces combining long-range interactions with the classical complexation free energy associated with the nearest neighbors. We demonstrate how the organometallic complexation is counterbalanced by the cost in free energy related to structural change on the colloidal scale in the solvent phase. These molecular forces of synergistic extraction are driven not only by the entropic term associated with the tight packing of electrolytes in the solvent and by the free energy cost of coextracting water toward the hydrophilic core of the reverse aggregates present but also by the entropic costs in the formation of the reverse aggregate and by the interfacial bending energy of the extractant molecules packed around the extracted species. Considering the sum of the terms, we can rationalize the synergy observed, which cannot be explained by classical extraction modeling. We show an industrial synergistic mixture combining an amide and a phosphate complexing site, where the most efficient/selective mixture is observed for a minimal bending energy and maximal complexation energy.

Details

Language :
English
ISSN :
07437463 and 15205827
Database :
OpenAIRE
Journal :
Langmuir, Langmuir, American Chemical Society, 2017, 33 (46), pp.13168-13179. ⟨10.1021/acs.langmuir.7b02068⟩, Langmuir, 2017, 33 (46), pp.13168-13179. ⟨10.1021/acs.langmuir.7b02068⟩
Accession number :
edsair.doi.dedup.....d3731ec186e8d131a2c5a65e65eaac46
Full Text :
https://doi.org/10.1021/acs.langmuir.7b02068⟩