Bruno Schapira, Nadine Guillotin-Plantard, Françoise Pène, Fabienne Castell, Laboratoire d'Analyse, Topologie, Probabilités (LATP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de mathématiques de Brest (LM), Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), ANR-07-BLAN-0231,MEMEMO,Marches aléatoires, milieux aléatoires, renforcement(2007), Laboratoire d'Analyse, Topologie, Probabilités ( LATP ), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique ( CNRS ), Université Claude Bernard Lyon 1 ( UCBL ), Institut Camille Jordan [Villeurbanne] ( ICJ ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de mathématiques de Brest ( LM ), Université de Brest ( UBO ) -Institut Brestois du Numérique et des Mathématiques ( IBNM ), Université de Brest ( UBO ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Mathématiques d'Orsay ( LM-Orsay ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), ANR MEMEMO and RANDYMECA,ANR MEMEMO and RANDYMECA, Institut Camille Jordan (ICJ), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
International audience; Random walks in random scenery are processes defined by $Z_n:=\sum_{k=1}^n\xi_{X_1+...+X_k}$, where $(X_k,k\ge 1)$ and $(\xi_y,y\in\mathbb Z)$ are two independent sequences of i.i.d. random variables. We assume here that their distributions belong to the normal domain of attraction of stable laws with index $\alpha\in (0,2]$ and $\beta\in (0,2]$ respectively. These processes were first studied by H. Kesten and F. Spitzer, who proved the convergence in distribution when $\alpha\neq 1$ and as $n\to \infty$, of $n^{-\delta}Z_n$, for some suitable $\delta>0$ depending on $\alpha$ and $\beta$. Here we are interested in the convergence, as $n\to \infty$, of $n^\delta{\mathbb P}(Z_n=\lfloor n^{\delta} x\rfloor)$, when $x\in \RR$ is fixed. We also consider the case of random walks on randomly oriented lattices for which we obtain similar results.