Back to Search Start Over

The contact process on random hyperbolic graphs: metastability and critical exponents

Authors :
Dieter Mitsche
Daniel Valesin
Amitai Linker
Bruno Schapira
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Institut de Mathématiques de Marseille (I2M)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
University of Groningen [Groningen]
Institut Camille Jordan (ICJ)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
Schapira, Bruno
Stochastic Studies and Statistics
Source :
Annals of Probability, Annals of Probability, 2021, 49 (3), pp.1480-1514. ⟨10.1214/20-AOP1489⟩, Annals of probability, 49(3), 1480-1514. INST MATHEMATICAL STATISTICS
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; We consider the contact process on the model of hyperbolic random graph, in the regime when the degree distribution obeys a power law with exponent χ ∈ (1, 2) (so that the degree distribution has finite mean and infinite second moment). We show that the probability of non-extinction as the rate of infection goes to zero decays as a power law with an exponent that only depends on χ and which is the same as in the configuration model, suggesting some universality of this critical exponent. We also consider finite versions of the hyperbolic graph and prove metastability results, as the size of the graph goes to infinity.

Details

Language :
English
ISSN :
00911798 and 2168894X
Database :
OpenAIRE
Journal :
Annals of Probability, Annals of Probability, 2021, 49 (3), pp.1480-1514. ⟨10.1214/20-AOP1489⟩, Annals of probability, 49(3), 1480-1514. INST MATHEMATICAL STATISTICS
Accession number :
edsair.doi.dedup.....697744baa987775adb884424425006f0
Full Text :
https://doi.org/10.1214/20-AOP1489⟩