Back to Search
Start Over
A local limit theorem for random walks in random scenery and on randomly oriented lattices
- Source :
- Annals of Probability, Annals of Probability, Institute of Mathematical Statistics, 2011, pp.Vol. 39, No 6, 2079--2118. ⟨10.1214/10-AOP606⟩, Annals of Probability, Institute of Mathematical Statistics, 2011, pp.Vol. 39, No 6, 2079--2118. 〈10.1214/10-AOP606〉, Annals of Probability, 2011, pp.Vol. 39, No 6, 2079--2118. ⟨10.1214/10-AOP606⟩, Ann. Probab. 39, no. 6 (2011), 2079-2118
- Publication Year :
- 2011
- Publisher :
- HAL CCSD, 2011.
-
Abstract
- International audience; Random walks in random scenery are processes defined by $Z_n:=\sum_{k=1}^n\xi_{X_1+...+X_k}$, where $(X_k,k\ge 1)$ and $(\xi_y,y\in\mathbb Z)$ are two independent sequences of i.i.d. random variables. We assume here that their distributions belong to the normal domain of attraction of stable laws with index $\alpha\in (0,2]$ and $\beta\in (0,2]$ respectively. These processes were first studied by H. Kesten and F. Spitzer, who proved the convergence in distribution when $\alpha\neq 1$ and as $n\to \infty$, of $n^{-\delta}Z_n$, for some suitable $\delta>0$ depending on $\alpha$ and $\beta$. Here we are interested in the convergence, as $n\to \infty$, of $n^\delta{\mathbb P}(Z_n=\lfloor n^{\delta} x\rfloor)$, when $x\in \RR$ is fixed. We also consider the case of random walks on randomly oriented lattices for which we obtain similar results.
- Subjects :
- Statistics and Probability
Random walk in random scenery
random walk on randomly oriented lattices
01 natural sciences
stable process
Stable process
Combinatorics
010104 statistics & probability
Mathematics::Probability
60F05
FOS: Mathematics
Limit (mathematics)
0101 mathematics
Mathematics
local limit theorem
Probability (math.PR)
010102 general mathematics
Random walk
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
60G52
Convergence of random variables
Domain (ring theory)
Statistics, Probability and Uncertainty
Random variable
[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]
Mathematics - Probability
Subjects
Details
- Language :
- English
- ISSN :
- 00911798 and 2168894X
- Database :
- OpenAIRE
- Journal :
- Annals of Probability, Annals of Probability, Institute of Mathematical Statistics, 2011, pp.Vol. 39, No 6, 2079--2118. ⟨10.1214/10-AOP606⟩, Annals of Probability, Institute of Mathematical Statistics, 2011, pp.Vol. 39, No 6, 2079--2118. 〈10.1214/10-AOP606〉, Annals of Probability, 2011, pp.Vol. 39, No 6, 2079--2118. ⟨10.1214/10-AOP606⟩, Ann. Probab. 39, no. 6 (2011), 2079-2118
- Accession number :
- edsair.doi.dedup.....4cfcaebce22539086ae14c07b719f972
- Full Text :
- https://doi.org/10.1214/10-AOP606⟩