1. Hypertrophic preconditioning attenuates post-myocardial infarction injury through deacetylation of isocitrate dehydrogenase 2
- Author
-
Junbo Ge, Leilei Ma, Fei-juan Kong, Junjie Guo, Shijun Wang, Aijun Sun, Yuanji Ma, Zheng Dong, and Yunzeng Zou
- Subjects
Male ,0301 basic medicine ,Mitochondrial ROS ,SIRT3 ,Myocardial Infarction ,Apoptosis ,Pharmacology ,medicine.disease_cause ,Article ,Muscle hypertrophy ,Gene Knockout Techniques ,03 medical and health sciences ,0302 clinical medicine ,Sirtuin 3 ,Animals ,Medicine ,Pharmacology (medical) ,Myocardial infarction ,Mice, Knockout ,chemistry.chemical_classification ,Reactive oxygen species ,business.industry ,Acetylation ,General Medicine ,medicine.disease ,Isocitrate Dehydrogenase ,Mitochondria ,Mice, Inbred C57BL ,Oxidative Stress ,030104 developmental biology ,chemistry ,Coronary occlusion ,030220 oncology & carcinogenesis ,Ischemic Preconditioning, Myocardial ,Mutation ,Ischemic preconditioning ,Reactive Oxygen Species ,business ,Oxidative stress - Abstract
Ischemic preconditioning induced by brief periods of coronary occlusion and reperfusion protects the heart from a subsequent prolonged ischemic insult. In this study we investigated whether a short-term nonischemic stimulation of hypertrophy renders the heart resistant to subsequent ischemic injury. Male mice were subjected to transient transverse aortic constriction (TAC) for 3 days followed aortic debanding on D4 (T3D4), as well as ligation of the left coronary artery to induce myocardial infarction (MI). The TAC preconditioning mice showed markedly improved contractile function and significantly reduced myocardial fibrotic area and apoptosis following MI. We revealed that TAC preconditioning significantly reduced MI-induced oxidative stress, evidenced by increased NADPH/NADP ratio and GSH/GSSG ratio, as well as decreased mitochondrial ROS production. Furthermore, TAC preconditioning significantly increased the expression and activity of SIRT3 protein following MI. Cardiac-specific overexpression of SIRT3 gene through in vivo AAV-SIRT3 transfection partially mimicked the protective effects of TAC preconditioning, whereas genetic ablation of SIRT3 in mice blocked the protective effects of TAC preconditioning. Moreover, expression of an IDH2 mutant mimicking deacetylation (IDH2 K413R) in cardiomyocytes promoted myocardial IDH2 activation, quenched mitochondrial reactive oxygen species (ROS), and alleviated post-MI injury, whereas expression of an acetylation mimic (IDH2 K413Q) in cardiomyocytes inactivated IDH2, exacerbated mitochondrial ROS overload, and aggravated post-MI injury. In conclusion, this study identifies TAC preconditioning as a novel strategy for induction of an endogenous self-defensive and cardioprotective mechanism against cardiac injury. Therapeutic strategies targeting IDH2 are promising treatment approaches for cardiac ischemic injury.
- Published
- 2021