1. Impact of Reck expression and promoter activity in neuronal in vitro differentiation
- Author
-
Mari Cleide Sogayar, Sheila M.B. Winnischofer, Ricardo Cesar Cintra, Joana D'Arc Campeiro, Isis C C Nascimento, Mirian A. F. Hayashi, Juliano R. Guerreiro, Thais Assis-Ribas, Henning Ulrich, and Maria Trombetta-Lima
- Subjects
0301 basic medicine ,Tumor suppressor gene ,Matrix metalloproteinase ,Kazal Motifs ,Pheochromocytoma ,03 medical and health sciences ,GLICOPROTEÍNAS ,0302 clinical medicine ,Genetics ,medicine ,Reck promoter activity ,Molecular Biology ,chemistry.chemical_classification ,P19 teratocarcinoma ,biology ,PC12 pheochromocytoma ,Wnt signaling pathway ,General Medicine ,medicine.disease ,In vitro ,Cell biology ,030104 developmental biology ,Tubulin ,Neuronal differentiation ,chemistry ,030220 oncology & carcinogenesis ,biology.protein ,Glycoprotein ,Reck tumor suppressor gene - Abstract
Reck (REversion-inducing Cysteine-rich protein with Kazal motifs) tumor suppressor gene encodes a multifunctional glycoprotein which inhibits the activity of several matrix metalloproteinases (MMPs), and has the ability to modulate the Notch and canonical Wnt pathways. Reck-deficient neuro-progenitor cells undergo precocious differentiation; however, modulation of Reck expression during progression of the neuronal differentiation process is yet to be characterized. In the present study, we demonstrate that Reck expression levels are increased during in vitro neuronal differentiation of PC12 pheochromocytoma cells and P19 murine teratocarcinoma cells and characterize mouse Reck promoter activity during this process. Increased Reck promoter activity was found upon induction of differentiation in PC12 cells, in accordance with its increased mRNA expression levels in mouse in vitro models. Interestingly, Reck overexpression, prior to the beginning of the differentiation protocol, led to diminished efficiency of the neuronal differentiation process. Taken together, our findings suggest that increased Reck expression at early stages of differentiation diminishes the number of neuron-like cells, which are positive for the beta-3 tubulin marker. Our data highlight the importance of Reck expression evaluation to optimize in vitro neuronal differentiation protocols.
- Published
- 2021