1. Dirac–Coulomb operators with general charge distribution II. The lowest eigenvalue
- Author
-
Maria J. Esteban, Eric Séré, Mathieu Lewin, CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL), ANR-17-CE29-0004,molQED,Electrodynamique Quantique Moléculaire(2017), European Project: 725528,MDFT, Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
General Mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Dirac (software) ,FOS: Physical sciences ,Dirac operator ,01 natural sciences ,Measure (mathematics) ,Mathematics - Spectral Theory ,35P30, 49J35, 49R05, 81Q10 ,symbols.namesake ,Mathematics - Analysis of PDEs ,Operator (computer programming) ,0103 physical sciences ,FOS: Mathematics ,Coulomb ,0101 mathematics ,Spectral Theory (math.SP) ,Mathematical Physics ,Eigenvalues and eigenvectors ,Mathematical physics ,Mathematics ,Lebesgue measure ,010102 general mathematics ,Spectrum (functional analysis) ,Mathematical Physics (math-ph) ,symbols ,010307 mathematical physics ,Analysis of PDEs (math.AP) - Abstract
Consider the Coulomb potential $-\mu\ast|x|^{-1}$ generated by a non-negative finite measure $\mu$. It is well known that the lowest eigenvalue of the corresponding Schr\"odinger operator $-\Delta/2-\mu\ast|x|^{-1}$ is minimized, at fixed mass $\mu(\mathbb{R}^3)=\nu$, when $\mu$ is proportional to a delta. In this paper we investigate the conjecture that the same holds for the Dirac operator $-i\alpha\cdot\nabla+\beta-\mu\ast|x|^{-1}$. In a previous work on the subject we proved that this operator is self-adjoint when $\mu$ has no atom of mass larger than or equal to 1, and that its eigenvalues are given by min-max formulas. Here we consider the critical mass $\nu_1$, below which the lowest eigenvalue does not dive into the lower continuum spectrum for all $\mu\geq0$ with $\mu(\mathbb{R}^3), Comment: Final version to appear in Proc. London Math. Soc
- Published
- 2021
- Full Text
- View/download PDF