Back to Search Start Over

Uniqueness and non-degeneracy for a nuclear nonlinear Schrödinger equation

Authors :
Mathieu Lewin
Simona Rota Nodari
Analyse, Géométrie et Modélisation (AGM - UMR 8088)
Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Laboratoire Paul Painlevé (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
European Project: 258023,EC:FP7:ERC,ERC-2010-StG_20091028,MNIQS(2010)
Laboratoire Paul Painlevé - UMR 8524 (LPP)
Source :
Nonlinear Differential Equations and Applications, Nonlinear Differential Equations and Applications, 2015, 22 (4), pp.673-698, Nonlinear Differential Equations and Applications, Springer Verlag, 2015, 22 (4), pp.673-698
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

We prove the uniqueness and non-degeneracy of positive solutions to a cubic nonlinear Schrodinger (NLS) type equation that describes nucleons. The main difficulty stems from the fact that the mass depends on the solution itself. As an application, we construct solutions to the \({\sigma}\)–\({\omega}\) model, which consists of one Dirac equation coupled to two Klein–Gordon equations (one focusing and one defocusing).

Details

Language :
English
ISSN :
10219722 and 14209004
Database :
OpenAIRE
Journal :
Nonlinear Differential Equations and Applications, Nonlinear Differential Equations and Applications, 2015, 22 (4), pp.673-698, Nonlinear Differential Equations and Applications, Springer Verlag, 2015, 22 (4), pp.673-698
Accession number :
edsair.doi.dedup.....c225bf55980347ac024180e3ec12cdeb