1. Fusion of GF and MODIS Data for Regional-Scale Grassland Community Classification with EVI2 Time-Series and Phenological Features
- Author
-
Jiahua Zhang, Tehseen Javed, Guizhen Liu, Dan Liu, Sha Zhang, Lan Xun, Fan Deng, Zhenjiang Wu, Da Zhang, and Mengfei Ji
- Subjects
010504 meteorology & atmospheric sciences ,0211 other engineering and technologies ,02 engineering and technology ,01 natural sciences ,Grassland ,Salix schwerinii ,lcsh:Science ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing ,geography ,geography.geographical_feature_category ,biology ,Phenology ,time-series ,GaoFen satellite ,Enhanced vegetation index ,regional-scale ,biology.organism_classification ,Support vector machine ,Spectroradiometer ,grassland community classification ,Temporal resolution ,ESTARFM ,General Earth and Planetary Sciences ,Environmental science ,lcsh:Q ,Scale (map) - Abstract
Satellite-borne multispectral data are suitable for regional-scale grassland community classification owing to comprehensive coverage. However, the spectral similarity of different communities makes it challenging to distinguish them based on a single multispectral data. To address this issue, we proposed a support vector machine (SVM)–based method integrating multispectral data, two-band enhanced vegetation index (EVI2) time-series, and phenological features extracted from Chinese GaoFen (GF)-1/6 satellite with ( 16m) spatial and ( 2 day) temporal resolution. To obtain cloud-free images, the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) algorithm was employed in this study. By using the algorithm on the coarse cloudless images at the same or similar time as the fine images with cloud cover, the cloudless fine images were obtained, and the cloudless EVI2 time-series and phenological features were generated. The developed method was applied to identify grassland communities in Ordos, China. The results show that the Caragana pumila Pojark, Caragana davazamcii Sanchir and Salix schwerinii E. L. Wolf grassland, the Potaninia mongolica Maxim, Ammopiptanthus mongolicus S. H. Cheng and Tetraena mongolica Maxim grassland, the Caryopteris mongholica Bunge and Artemisia ordosica Krasch grassland, the Calligonum mongolicum Turcz grassland, and the Stipa breviflora Griseb and Stipa bungeana Trin grassland are distinguished with an overall accuracy of 87.25%. The results highlight that, compared to multispectral data only, the addition of EVI2 time-series and phenological features improves the classification accuracy by 9.63% and 14.7%, respectively, and even by 27.36% when these two features are combined together, and indicate the advantage of the fine images in this study, compared to 500m moderate-resolution imaging spectroradiometer (MODIS) data, which are commonly used for grassland classification at regional scale, while using 16m GF data suggests a 23.96% increase in classification accuracy with the same extracted features. This study indicates that the proposed method is suitable for regional-scale grassland community classification.
- Published
- 2021
- Full Text
- View/download PDF