Back to Search Start Over

Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations

Authors :
Kevin Schaefer
Eliane R. Popa
Damiano Sferlazzo
Pieter P. Tans
R. E. M. Neubert
Juha Hatakka
Philippe Ciais
F. Apadula
M. Ramonet
Alex Vermeulen
Maarten Krol
L. Ciattaglia
Chris D. Jones
Andrés Jordán
Tuula Aalto
K. A. Masarie
J. A. Morguí
J. Hughes
Daniela Heltai
C. Uglietti
Harro A. J. Meijer
Andrew C. Manning
Miroslaw Zimnoch
Frank Meinhardt
A. di Sarra
Wouter Peters
Kazimierz Rozanski
Sander Houweling
Xavier Rodó
John B. Miller
Martina Schmidt
C. H. Cho
Andrew R. Jacobson
László Haszpra
S. van der Laan
Salvatore Piacentino
Markus Leuenberger
G. R. van der Werf
Martin Heimann
A. J. Dolman
Johan Ström
Hydrology and Geo-environmental sciences
Sub Atmospheric physics and chemistry
Dep Natuurkunde
Subatomic Physics Institute
Wageningen University and Research [Wageningen] (WUR)
Meteorology and Air Quality Department [Wageningen] (MAQ)
Faculty of Earth and Life Sciences [Amsterdam] (FALW)
Vrije Universiteit Amsterdam [Amsterdam] (VU)
SRON Netherlands Institute for Space Research (SRON)
Met Office Hadley Centre for Climate Change (MOHC)
United Kingdom Met Office [Exeter]
National Snow and Ice Data Center (NSIDC)
University of Colorado [Boulder]
National Oceanic and Atmospheric Administration (NOAA)
Cooperative Institute for Research in Environmental Sciences (CIRES)
University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA)
Seoul National University [Seoul] (SNU)
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
ICOS-RAMCES (ICOS-RAMCES)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Finnish Meteorological Institute (FMI)
Hungarian Meteorological Service (OMSZ)
AGH University of Science and Technology [Krakow, PL] (AGH UST)
Climate and Environmental Physics [Bern] (CEP)
Physikalisches Institut [Bern]
Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE)
ICOS-ATC (ICOS-ATC)
Max Planck Institute for Biogeochemistry (MPI-BGC)
Max-Planck-Gesellschaft
NOAA Climate Monitoring and Diagnostics Laboratory (CMDL)
Isotope Research
Restoring Organ Function by Means of Regenerative Medicine (REGENERATE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Hungarian Meteorological Service (OMSz)
Universität Bern [Bern]-Universität Bern [Bern]
Source :
Global Change Biology, 16(4), 1317-1337. Wiley-Blackwell Publishing, Global Change Biology, 16(4), 1317-1337, Global Change Biology, Global Change Biology, 2010, 16 (4), pp.1317-1337. ⟨10.1111/j.1365-2486.2009.02078.x⟩, Global Change Biology, 16(4), 1317-1337. Wiley, Global Change Biology, 16(4), 1317. John Wiley & Sons, Ltd (10.1111), Global Change Biology, Wiley, 2010, 16 (4), pp.1317-1337. ⟨10.1111/j.1365-2486.2009.02078.x⟩, Peters, W, Krol, M C, van der Werf, G R, Houweling, S, Jones, C D, Hughes, J, Schaefer, K, Masarie, K A, Jacobson, A R, Miller, J B, Cho, C H, Ramonet, M, Schmidt, M, Ciattaglia, L, Apadula, F, Helta, D, Meinhardt, F, DI Sarra, A G, Piacentino, S, Sferlazzo, D, Aalto, D, Hatakka, J, Strom, J, Haszpra, L, Meijer, H A J, van der Laan, S, Neubert, R E M, Jordan, A, Rodo, X, Morgui, J-A, Vermeulen, A T, Popa, E, Rozanski, K, Zimnoch, M, Manning, A C, Leuenberger, M, Uglietti, C, Dolman, A J, Ciais, P, Heimann, M & Tans, P P 2010, ' Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations ', Global Change Biology, vol. 16, no. 4, pp. 1317-1337 . https://doi.org/10.1111/j.1365-2486.2009.02078.x, Global Change Biology 16 (2010) 4
Publication Year :
2010

Abstract

We present an estimate of net ecosystem exchange (NEE) of CO2 in Europe for the years 2001-2007. It is derived with a data assimilation that uses a large set of atmospheric CO2 mole fraction observations (∼70 000) to guide relatively simple descriptions of terrestrial and oceanic net exchange, while fossil fuel and fire emissions are prescribed. Weekly terrestrial sources and sinks are optimized (i.e., a flux inversion) for a set of 18 large ecosystems across Europe in which prescribed climate, weather, and surface characteristics introduce finer scale gradients. We find that the terrestrial biosphere in Europe absorbed a net average of -165 Tg C yr-1 over the period considered. This uptake is predominantly in non-EU countries, and is found in the northern coniferous (-94 Tg C yr-1) and mixed forests (-30 Tg C yr-1) as well as the forest/field complexes of eastern Europe (-85 Tg C yr-1). An optimistic uncertainty estimate derived using three biosphere models suggests the uptake to be in a range of -122 to -258 Tg C yr-1, while a more conservative estimate derived from the a-posteriori covariance estimates is -165±437 Tg C yr-1. Note, however, that uncertainties are hard to estimate given the nature of the system and are likely to be significantly larger than this. Interannual variability in NEE includes a reduction in uptake due to the 2003 drought followed by 3 years of more than average uptake. The largest anomaly of NEE occurred in 2005 concurrent with increased seasonal cycles of observed CO2. We speculate these changes to result from the strong negative phase of the North Atlantic Oscillation in 2005 that lead to favorable summer growth conditions, and altered horizontal and vertical mixing in the atmosphere. All our results are available through http://www.carbontracker.eu. © 2009 Blackwell Publishing Ltd.

Details

Language :
English
ISSN :
13541013 and 13652486
Volume :
16
Issue :
4
Database :
OpenAIRE
Journal :
Global Change Biology
Accession number :
edsair.doi.dedup.....74d670704cf6bde753eb19ddf895a7d8
Full Text :
https://doi.org/10.1111/j.1365-2486.2009.02078.x⟩