Back to Search
Start Over
Fusion of GF and MODIS Data for Regional-Scale Grassland Community Classification with EVI2 Time-Series and Phenological Features
- Source :
- Remote Sensing, Volume 13, Issue 5, Pages: 835, Remote Sensing, Vol 13, Iss 835, p 835 (2021)
- Publication Year :
- 2021
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2021.
-
Abstract
- Satellite-borne multispectral data are suitable for regional-scale grassland community classification owing to comprehensive coverage. However, the spectral similarity of different communities makes it challenging to distinguish them based on a single multispectral data. To address this issue, we proposed a support vector machine (SVM)–based method integrating multispectral data, two-band enhanced vegetation index (EVI2) time-series, and phenological features extracted from Chinese GaoFen (GF)-1/6 satellite with ( 16m) spatial and ( 2 day) temporal resolution. To obtain cloud-free images, the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) algorithm was employed in this study. By using the algorithm on the coarse cloudless images at the same or similar time as the fine images with cloud cover, the cloudless fine images were obtained, and the cloudless EVI2 time-series and phenological features were generated. The developed method was applied to identify grassland communities in Ordos, China. The results show that the Caragana pumila Pojark, Caragana davazamcii Sanchir and Salix schwerinii E. L. Wolf grassland, the Potaninia mongolica Maxim, Ammopiptanthus mongolicus S. H. Cheng and Tetraena mongolica Maxim grassland, the Caryopteris mongholica Bunge and Artemisia ordosica Krasch grassland, the Calligonum mongolicum Turcz grassland, and the Stipa breviflora Griseb and Stipa bungeana Trin grassland are distinguished with an overall accuracy of 87.25%. The results highlight that, compared to multispectral data only, the addition of EVI2 time-series and phenological features improves the classification accuracy by 9.63% and 14.7%, respectively, and even by 27.36% when these two features are combined together, and indicate the advantage of the fine images in this study, compared to 500m moderate-resolution imaging spectroradiometer (MODIS) data, which are commonly used for grassland classification at regional scale, while using 16m GF data suggests a 23.96% increase in classification accuracy with the same extracted features. This study indicates that the proposed method is suitable for regional-scale grassland community classification.
- Subjects :
- 010504 meteorology & atmospheric sciences
0211 other engineering and technologies
02 engineering and technology
01 natural sciences
Grassland
Salix schwerinii
lcsh:Science
021101 geological & geomatics engineering
0105 earth and related environmental sciences
Remote sensing
geography
geography.geographical_feature_category
biology
Phenology
time-series
GaoFen satellite
Enhanced vegetation index
regional-scale
biology.organism_classification
Support vector machine
Spectroradiometer
grassland community classification
Temporal resolution
ESTARFM
General Earth and Planetary Sciences
Environmental science
lcsh:Q
Scale (map)
Subjects
Details
- Language :
- English
- ISSN :
- 20724292
- Database :
- OpenAIRE
- Journal :
- Remote Sensing
- Accession number :
- edsair.doi.dedup.....2eea0b3bbf38b42e510666a9425ad19b
- Full Text :
- https://doi.org/10.3390/rs13050835