1. Mapping the nonequilibrium order parameter of a quasi-two dimensional charge density wave system
- Author
-
C. J. Sayers, Y. Zhang, C. E. Sanders, R. T. Chapman, A. S. Wyatt, G. Chatterjee, E. Springate, G. Cerullo, D. Wolverson, E. Da Como, and E. Carpene
- Subjects
Astrophysics ,QB460-466 ,Physics ,QC1-999 - Abstract
Abstract The driving force of a charge density wave (CDW) transition in quasi-two dimensional systems is still debated, while being crucial in understanding electronic correlation in such materials. Here we use femtosecond time- and angle-resolved photoemission spectroscopy combined with computational methods to investigate the coherent lattice dynamics of a prototypical CDW system. The photo-induced temporal evolution of the periodic lattice distortion associated with the amplitude mode reveals the dynamics of the free energy functional governing the order parameter. Our approach establishes that optically-induced screening rather than CDW melting at the electronic level leads to a transiently modified potential which explains the anharmonic behaviour of the amplitude mode and discloses the structural origin of the symmetry-breaking phase transition.
- Published
- 2024
- Full Text
- View/download PDF