401 results on '"Krammer, F"'
Search Results
2. Universal influenza virus vaccines and therapeutic antibodies
- Author
-
Nachbagauer, R. and Krammer, F.
- Published
- 2017
- Full Text
- View/download PDF
3. Broad spectrum SARS-CoV-2-specific immunity in hospitalized First Nations peoples recovering from COVID-19
- Author
-
Zhang, W, Clemens, EB, Kedzierski, L, Chua, BY, Mayo, M, Lonzi, C, Hinchcliff, A, Rigas, V, Middleton, BF, Binks, P, Rowntree, LC, Allen, LF, Tan, H-X, Petersen, J, Chaurasia, P, Krammer, F, Wheatley, AK, Kent, SJ, Rossjohn, J, Miller, A, Lynar, S, Nelson, J, Nguyen, THO, Davies, J, Kedzierska, K, Zhang, W, Clemens, EB, Kedzierski, L, Chua, BY, Mayo, M, Lonzi, C, Hinchcliff, A, Rigas, V, Middleton, BF, Binks, P, Rowntree, LC, Allen, LF, Tan, H-X, Petersen, J, Chaurasia, P, Krammer, F, Wheatley, AK, Kent, SJ, Rossjohn, J, Miller, A, Lynar, S, Nelson, J, Nguyen, THO, Davies, J, and Kedzierska, K
- Abstract
Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
- Published
- 2023
4. Robust SARS-CoV-2 T cell responses with common TCRab motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells
- Author
-
Nguyen, THO, Rowntree, LC, Allen, LF, Chua, BY, Kedzierski, L, Lim, C, Lasica, M, Tennakoon, GS, Saunders, NR, Crane, M, Chee, L, Seymour, JF, Anderson, MA, Whitechurch, A, Clemens, EB, Zhang, W, Chang, SY, Habel, JR, Jia, X, McQuilten, HA, Minervina, AA, Pogorelyy, MV, Chaurasia, P, Petersen, J, Menon, T, Hensen, L, Neil, JA, Mordant, FL, Tan, H-X, Cabug, AF, Wheatley, AK, Kent, SJ, Subbarao, K, Karapanagiotidis, T, Huang, H, Vo, LK, Cain, NL, Nicholson, S, Krammer, F, Gibney, G, James, F, Trevillyan, JM, Trubiano, JA, Mitchell, J, Christensen, B, Bond, KA, Williamson, DA, Rossjohn, J, Crawford, JC, Thomas, PG, Thursky, KA, Slavin, MA, Tam, CS, Teh, BW, Kedzierska, K, Nguyen, THO, Rowntree, LC, Allen, LF, Chua, BY, Kedzierski, L, Lim, C, Lasica, M, Tennakoon, GS, Saunders, NR, Crane, M, Chee, L, Seymour, JF, Anderson, MA, Whitechurch, A, Clemens, EB, Zhang, W, Chang, SY, Habel, JR, Jia, X, McQuilten, HA, Minervina, AA, Pogorelyy, MV, Chaurasia, P, Petersen, J, Menon, T, Hensen, L, Neil, JA, Mordant, FL, Tan, H-X, Cabug, AF, Wheatley, AK, Kent, SJ, Subbarao, K, Karapanagiotidis, T, Huang, H, Vo, LK, Cain, NL, Nicholson, S, Krammer, F, Gibney, G, James, F, Trevillyan, JM, Trubiano, JA, Mitchell, J, Christensen, B, Bond, KA, Williamson, DA, Rossjohn, J, Crawford, JC, Thomas, PG, Thursky, KA, Slavin, MA, Tam, CS, Teh, BW, and Kedzierska, K
- Abstract
Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.
- Published
- 2023
5. Robust and prototypical immune responses toward COVID-19 vaccine in First Nations peoples are impacted by comorbidities
- Author
-
Zhang, W, Kedzierski, L, Chua, BY, Mayo, M, Lonzi, C, Rigas, V, Middleton, BF, McQuilten, HA, Rowntree, LC, Allen, LF, Purcell, RA, Tan, H-X, Petersen, J, Chaurasia, P, Mordant, F, Pogorelyy, MV, Minervina, AA, Crawford, JC, Perkins, GB, Zhang, E, Gras, S, Clemens, EB, Juno, JA, Audsley, J, Khoury, DS, Holmes, NE, Thevarajan, I, Subbarao, K, Krammer, F, Cheng, AC, Davenport, MP, Grubor-Bauk, B, Coates, PT, Christensen, B, Thomas, PG, Wheatley, AK, Kent, SJ, Rossjohn, J, Chung, AW, Boffa, J, Miller, A, Lynar, S, Nelson, J, Nguyen, THO, Davies, J, Kedzierska, K, Zhang, W, Kedzierski, L, Chua, BY, Mayo, M, Lonzi, C, Rigas, V, Middleton, BF, McQuilten, HA, Rowntree, LC, Allen, LF, Purcell, RA, Tan, H-X, Petersen, J, Chaurasia, P, Mordant, F, Pogorelyy, MV, Minervina, AA, Crawford, JC, Perkins, GB, Zhang, E, Gras, S, Clemens, EB, Juno, JA, Audsley, J, Khoury, DS, Holmes, NE, Thevarajan, I, Subbarao, K, Krammer, F, Cheng, AC, Davenport, MP, Grubor-Bauk, B, Coates, PT, Christensen, B, Thomas, PG, Wheatley, AK, Kent, SJ, Rossjohn, J, Chung, AW, Boffa, J, Miller, A, Lynar, S, Nelson, J, Nguyen, THO, Davies, J, and Kedzierska, K
- Abstract
High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.
- Published
- 2023
6. OA06.03 Serological Response to SARS-CoV-2 Vaccination in Patients Lung Cancer: A Mount Sinai-Led Prospective Matched Controlled Study
- Author
-
Mack, P.C., primary, Gomez, J.C., additional, Rodilla, A., additional, Carreño, J.M., additional, Hsu, C.-Y., additional, Rolfo, C.D., additional, Meshulami, N., additional, Moore, A., additional, Brody, R., additional, King, J.C., additional, Treatman, J., additional, Lee, S., additional, Raskin, A., additional, Srivastava, K., additional, Gleason, C.R., additional, Tcheou, J., additional, Bielak, D., additional, Acharya, R., additional, Gerber, D.E., additional, Rohs, N., additional, Henschke, C.I., additional, Yankelevitz, D.F., additional, Simon, V., additional, Minna, J.D., additional, Bunn, P.A., additional, García- Sastre, A., additional, Krammer, F., additional, Shyr, Y., additional, and Hirsch, F.R., additional
- Published
- 2022
- Full Text
- View/download PDF
7. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
- Author
-
Zhang Q., Liu Z., Moncada-Velez M., Chen J., Ogishi M., Bigio B., Yang R., Arias A. A., Zhou Q., Han J. E., Ugurbil A. C., Zhang P., Rapaport F., Li J., Spaan A. N., Boisson B., Boisson-Dupuis S., Bustamante J., Puel A., Ciancanelli M. J., Zhang S. -Y., Beziat V., Jouanguy E., Abel L., Cobat A., Casanova J. -L., Bastard P., Korol C., Rosain J., Philippot Q., Chbihi M., Lorenzo L., Bizien L., Neehus A. -L., Kerner G., Seeleuthner Y., Manry J., Le Voyer T., Le Pen J., Schneider W. M., Razooky B. S., Hoffmann H. -H., Michailidis E., Rice C. M., Sabli I. K. D., Hodeib S., Sancho-Shimizu V., Bilguvar K., Ye J., Maniatis T., Bolze A., Zhang Y., Notarangelo L. D., Su H. C., Onodi F., Korniotis S., Karpf L., Soumelis V., Bonnet-Madin L., Amara A., Dorgham K., Gorochov G., Smith N., Duffy D., Moens L., Meyts I., Meade P., Garcia-Sastre A., Krammer F., Corneau A., Masson C., Schmitt Y., Schluter A., Pujol A., Khan T., Marr N., Fellay J., Roussel L., Vinh D. C., Shahrooei M., Alosaimi M. F., Alsohime F., Hasanato R., Mansouri D., Al-Saud H., Almourfi F., Al-Mulla F., Al-Muhsen S. Z., Al Turki S., van de Beek D., Biondi A., Bettini L. R., D'Angio M., Bonfanti P., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Oler A. J., Tompkins M. F., Alba C., Dalgard C. L., Vandernoot I., Smits G., Goffard J. -C., Migeotte I., Haerynck F., Soler-Palacin P., Martin-Nalda A., Colobran R., Morange P. -E., Keles S., Colkesen F., Ozcelik T., Yasar K. K., Senoglu S., Karabela S. N., Rodriguez-Gallego C., Novelli G., Hraiech S., Tandjaoui-Lambiotte Y., Duval X., Laouenan C., Snow A. L., Milner J. D., Mogensen T. H., Nussenzweig M., Lifton R. P., Foti G., Bellani G., Citerio G., Contro E., Pesci A., Valsecchi M. G., Cazzaniga M., Abad J., Blanco I., Rodrigo C., Aguilera-Albesa S., Akcan O. M., Darazam I. A., Aldave J. C., Ramos M. A., Nadji S. A., Alkan G., Allardet-Servent J., Allende L. M., Alsina L., Alyanakian M. -A., Amador-Borrero B., Mouly S., Sene D., Amoura Z., Mathian A., Antoli A., Blanch G. R., Riera J. S., Moreno X. S., Arslan S., Assant S., Auguet T., Azot A., Bajolle F., Levy R., Oualha M., Baldolli A., Ballester M., Feldman H. B., Barrou B., Beurton A., Bilbao A., Blanchard-Rohner G., Blandinieres A., Rivet N., Blazquez-Gamero D., Bloomfield M., Bolivar-Prados M., Clave P., Borie R., Bosteels C., Lambrecht B. N., van Braeckel E., Bousfiha A. A., Bouvattier C., Vincent A., Boyarchuk O., Bueno M. R. P., Castro M. V., Matos L. R. B., Zatz M., Agra J. J. C., Calimli S., Capra R., Carrabba M., Fabio G., Casasnovas C., Velez-Santamaria V., Caseris M., Falck A., Poncelet G., Castelle M., Castelli F., de Vera M. C., Catherinot E., Chalumeau M., Toubiana J., Charbit B., Li Z., Pellegrini S., Cheng M. P., Clotet B., Codina A., Comarmond C., Dalmau D., Darley D. R., Dauby N., Dauger S., Le Bourgeois F., Levy M., de Pontual L., Dehban A., Delplancq G., Demoule A., Diehl J. -L., Dobbelaere S., Durand S., Mircher C., Rebillat A. -S., Vilaire M. E., Eldars W., Elgamal M., Elnagdy M. H., Emiroglu M., Erdeniz E. H., Aytekin S. E., Euvrard R., Evcen R., Faivre L., Fartoukh M., Faure M., Arquero M. F., Flores C., Francois B., Fumado V., Fusco F., Ursini M. V., Solis B. G., de Diego R. P., van Den Rym A. M., Gaussem P., Gil-Herrera J., Gilardin L., Alarcon M. G., Girona-Alarcon M., Gok F., Yosunkaya A., Gonzalez-Montelongo R., Inigo-Campos A., Lorenzo-Salazar J. M., Munoz-Barrera A., Guerder A., Gul Y., Guner S. N., Gut M., Hadjadj J., Halwani R., Hammarstrom L., Hatipoglu N., Hernandez-Brito E., Heijmans C., Holanda-Pena M. S., Horcajada J. P., Hoste L., Hoste E., Humbert L., Mordacq C., Thumerelle C., Vuotto F., Iglesias A. D., Jamme M., Arranz M. J., Jordan I., Jorens P., Kanat F., Kapakli H., Kara I., Karbuz A., Demirkol Y. K., Klocperk A., Krol Z. J., Kuentz P., Kwan Y. W. M., Lagier J. -C., Lau Y. -L., Leung D., Leo Y. -S., Young B. E., Lopez R. L., Levin M., Linglart A., Loeys B., Louapre C., Lubetzki C., Luyt C. -E., Lye D. C., Marjani M., Pereira J. M., Martin A., Pueyo D. M., Martinez-Picado J., Marzana I., Matthews G. V., Mayaux J., Parizot C., Quentric P., Mege J. -L., Raoult D., Melki I., Meritet J. -F., Metin O., Mezidi M., Taccone F., Millereux M., Mirault T., Mirsaeidi M., Melian A. M., Martinez A. M., Morange P., Morelle G., Naesens L., Nafati C., Neves J. F., Ng L. F. P., Medina Y. N., Cuadros E. N., Gonzalo Ocejo-Vinyals J., Orbak Z., Pan-Hammarstrom Q., Pascreau T., Paz-Artal E., Philippe A., Planas-Serra L., Ploin D., Viel S., Poissy J., Pouletty M., Reisli I., Ricart P., Richard J. -C., Riviere J. G., Rodriguez-Palmero A., Romero C. S., Rothenbuhler A., Rozenberg F., del Prado M. Y. R., Sanchez O., Sanchez-Ramon S., Schmidt M., Schweitzer C. E., Scolari F., Sediva A., Seijo L. M., Seppanen M. R. J., Ilovich A. S., Slabbynck H., Smadja D. M., Sobh A., Sole-Violan J., Soler C., Stepanovskiy Y., Stoclin A., Taupin J. -L., Tavernier S. J., Terrier B., Tomasoni G., Alvarez J. T., Trouillet-Assant S., Troya J., Tucci A., Uzunhan Y., Vabres P., Valencia-Ramos J., van de Velde S., van Praet J., Vatansev H., Vilain C., Voiriot G., Yucel F., Zannad F., Belot A., Bole-Feysot C., Lyonnet S., Nitschke P., Pouliet A., Tores F., Zarhrate M., Andrejak C., Angoulvant F., Bachelet D., Bhavsar K., Bouadma L., Chair A., Couffignal C., Silveira C. D., Debray M. -P., Eloy P., Esposito-Farese M., Ettalhaoui N., Gault N., Ghosn J., Gorenne I., Hoffmann I., Kafif O., Kali S., Khalil A., Laribi S., Le M., Le Hingrat Q., Lescure F. -X., Lucet J. C., Mentre F., Mullaert J., Peiffer-Smadja N., Peytavin G., Roy C., Schneider M., Mohammed N. S., Tagherset L., Tardivon C., Tellier M. -C., Timsit J. -F., Trioux T., Tubiana S., Basmaci R., Behillil S., Beluze M., Benkerrou D., Dorival C., Meziane A., Teoule F., Bompart F., Bouscambert M., Gaymard A., Lina B., Rosa-Calatrava M., Terrier O., Caralp M., Cervantes-Gonzalez M., D'Ortenzio E., Puechal O., Semaille C., Coelho A., Diouf A., Hoctin A., Mambert M., Couffin-Cadiergues S., Deplanque D., Descamps D., Visseaux B., Desvallees M., Khan C., Diallo A., Mercier N., Paul C., Petrov-Sanchez V., Dubos F., Enouf V. V. E., Mouquet H., Esperou H., Jaafoura S., Papadopoulos A., Etienne M., Gigante T., Rossignol B., Guedj J., Le Nagard H., Lingas G., Neant N., Kaguelidou F., Levy Y., Wiedemann A., Levy-Marchal C., Malvy D., Noret M., Pages J., Picone O., Rossignol P., Tual C., Veislinger A., van der Werf S., Vanel N., Yazdanpanah Y., Alavoine L., Costa Y., Ecobichon J. -L., Frezouls W., Ilic-Habensus E., Leclercq A., Lehacaut J., Letrou S., Mandic M., Nouroudine M., Quintin C., Rexach J., Vignali V., Amat K. K. A., Enouf V., Bielicki J., Bruijning P., Burdet C., Caumes E., Charpentier C., Damond F., Coignard B., Delmas C., Roufai L., Dechanet A., Houhou N., Kikoine J., Manchon P., Piquard V., Postolache A., Terzian Z., Lebeaux D., Lucet J. -C., Meghadecha M., Motiejunaite J., Thy M., van Agtmael M., Bomers M., Chouchane O., Geerlings S., Goorhuis B., Grobusch M. P., Harris V., Hermans S. M., Hovius J. W., Nellen J., Peters E., van der Poll T., Prins J. M., Reijnders T., Schinkel M., Sigaloff K., Stijnis C. S., van der Valk M., van Vugt M., Joost Wiersinga W., Algera A. G., van Baarle F., Bos L., Botta M., de Bruin S., Bulle E., Elbers P., Fleuren L., Girbes A., Hagens L., Heunks L., Horn J., van Mourik N., Paulus F., Raasveld J., Schultz M. J., Smit M., Stilma W., Thoral P., Tsonas A., de Vries H., Bax D., Cloherty A., Beudel M., Brouwer M. C., Koning R., Bogaard H. J., de Brabander J., de Bree G., Bugiani M., Geerts B., Hollmann M. W., Preckel B., Veelo D., Geijtenbeek T., Hafkamp F., Hamann J., Hemke R., de Jong M. D., Schuurman A., Teunissen C., Vlaar A. P. J., Wouters D., Zwinderman A. H., Aiuti A., Muhsen S. A., Anderson M. S., Bogunovic D., Itan Y., Cirulli E., Barrett K. S., Washington N., Bondarenko A., Brodin P., Bryceson Y., Bustamante C. D., Butte M., Casari G., Chakravorty S., Christodoulou J., Le Mestre S., Condino-Neto A., Cooper M. A., David A., DeRisi J. L., Desai M., Drolet B. A., Espinosa S., Franco J. L., Gregersen P. K., Hagin D., Heath J., Henrickson S. E., Hsieh E., Imai K., Karamitros T., Kisand K., Ku C. -L., Ling Y., Lucas C. L., Marodi L., Milner J., Mironska K., Mogensen T., Morio T., Novelli A., O'Farrelly C., Okada S., Planas A. M., Prando C., Quintana-Murci L., Renia L., Renieri A., Sankaran V., Snow A., Tangye S., Turvey S., Uddin F., Uddin M. J., Vazquez S. E., von Bernuth H., Zawadzki P., Jing H., Tung W., Meguro K., Shaw E., Shafer S., Zheng L., Zhang Z., Kubo S., Chauvin S. D., Lenardo M., Luthers C. R., Bauman B. M., Lack J., Karlins E., Hupalo D. M., Rosenberger J., Sukumar G., Wilkerson M. D., Zhang X., Rockefeller University [New York], Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Immunologie humaine, physiopathologie & immunothérapie (HIPI (UMR_S_976 / U976)), Génomes, biologie cellulaire et thérapeutiques (GenCellDi (UMR_S_944)), Collège de France (CdF (institution))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre d'Immunologie et de Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Immunologie Translationnelle - Translational Immunology lab, Institut Pasteur [Paris], Unité Mixte de Service Production et Analyse de données en Sciences de la vie et en Santé (PASS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Cytométrie Pitié-Salpêtrière (PASS-CYPS), Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre recherche en CardioVasculaire et Nutrition = Center for CardioVascular and Nutrition research (C2VN), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Infection, Anti-microbiens, Modélisation, Evolution (IAME (UMR_S_1137 / U1137)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)-Université Sorbonne Paris Nord, CIC - CHU Bichat, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Investigation Clinique [Rennes] (CIC), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Hôpital Pontchaillou-Institut National de la Santé et de la Recherche Médicale (INSERM), R01AI088364, National Institutes of Health, Howard Hughes Medical Institute, UL1 TR001866, NIH Clinical and Translational Science Award, fast grant, Emergent Ventures, St. Giles Foundation, National Center for Advancing Translational Sciences, Rockefeller University, ANR-10-IAHU-01, Agence Nationale de la Recherche, UM1HG006504 and U24HG008956, National Human Genome Research Institute, ANR-10-LABX-62-IBEID, the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence, EQU201903007798, the French Foundation for Medical Research, Özçelik, Tayfun, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Génomes, biologie cellulaire et thérapeutiques (GenCellDi (U944 / UMR7212)), Collège de France (CdF (institution))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut Pasteur [Paris] (IP), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Université Sorbonne Paris Nord, Université de Rennes (UR)-Hôpital Pontchaillou-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Modeling & analysis for medical imaging and Diagnosis (MYRIAD), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Virologie (CNRS-UMR3569), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ANR-10-IAHU-0001,Imagine,Institut Hospitalo-Universitaire Imagine(2010), ANR-17-CE15-0003,DENDRISEPSIS,Analyse systémique des cellules présentatrices d'antigène dans le sepsis humain(2017), ANR-20-COVI-0025,iCovid,Immunopathologie du COVID-19 à l'Assistance Publique Hôpitaux de Paris(2020), Zhang, Qian, Bastard, Paul, Le Pen, Jeremie, Moncada-Velez, Marcela, Ogishi, Masato, Sabli, Ira K. D., Hodeib, Stephanie, Korol, Cecilia, Bilguvar, Kaya, Bolze, Alexandre, Bigio, Benedetta, Yang, Rui, Arias, Andrés Augusto, Zhou, Qinhua, Chbihi, Marwa, Bonnet-Madin, Lucie, Dorgham, Karim, Smith, Nikaïa, Schneider, William M., Razooky, Brandon S., Hoffmann, Hans-Heinrich, Michailidis, Eleftherios, Han, Jin Eun, Lorenzo, Lazaro, Bizien, Lucy, Meade, Philip, Neehus, Anna-Lena, Ugurbil, Aileen Camille, Kerner, Gaspard, Zhang, Peng, Rapaport, Franck, Manry, Jérémy, Masson, Cecile, Schlüter, Agatha, Le Voyer, Tom, Khan, Taushif, Fellay, Jacques, Roussel, Lucie, Alosaimi, Mohammed F., Al-Mulla, Fahd, Almourfi, Feras, Alsohime, Fahad, Al Turki, Saeed, Hasanato, Rana, Beek, Diederik van der, Bettini, Laura Rachele, Bonfanti, Paolo, Oler, Andrew J., Tompkins, Miranda F., Alba, Camille, Smits, Guillaume, Soler-Palacín, Pere, Martin-Nalda, Andrea, Colobran, Roger, Çölkesen, Fatma, Yasar, Kadriye Kart, Senoglu, Sevtap, Karabela, Şemsi Nur, Rodríguez-Gallego, Carlos, Novelli, Giuseppe, Tandjaoui-Lambiotte, Yacine, Laouénan, Cédric, Zhang, Q, Bastard, P, Liu, Z, Le Pen, J, Moncada-Velez, M, Chen, J, Ogishi, M, Sabli, I, Hodeib, S, Korol, C, Rosain, J, Bilguvar, K, Ye, J, Bolze, A, Bigio, B, Yang, R, Arias, A, Zhou, Q, Zhang, Y, Onodi, F, Korniotis, S, Karpf, L, Philippot, Q, Chbihi, M, Bonnet-Madin, L, Dorgham, K, Smith, N, Schneider, W, Razooky, B, Hoffmann, H, Michailidis, E, Moens, L, Han, J, Lorenzo, L, Bizien, L, Meade, P, Neehus, A, Ugurbil, A, Corneau, A, Kerner, G, Zhang, P, Rapaport, F, Seeleuthner, Y, Manry, J, Masson, C, Schmitt, Y, Schlüter, A, Le Voyer, T, Khan, T, Li, J, Fellay, J, Roussel, L, Shahrooei, M, Alosaimi, M, Mansouri, D, Al-Saud, H, Al-Mulla, F, Almourfi, F, Al-Muhsen, S, Alsohime, F, Al Turki, S, Hasanato, R, van de Beek, D, Biondi, A, Bettini, L, D'Angio, M, Bonfanti, P, Imberti, L, Sottini, A, Paghera, S, Quiros-Roldan, E, Rossi, C, Oler, A, Tompkins, M, Alba, C, Vandernoot, I, Goffard, J, Smits, G, Migeotte, I, Haerynck, F, Soler-Palacin, P, Martin-Nalda, A, Colobran, R, Morange, P, Keles, S, Çölkesen, F, Ozcelik, T, Yasar, K, Senoglu, S, Karabela, Ş, Gallego, C, Novelli, G, Hraiech, S, Tandjaoui-Lambiotte, Y, Duval, X, Laouénan, C, Snow, A, Dalgard, C, Milner, J, Vinh, D, Mogensen, T, Marr, N, Spaan, A, Boisson, B, Boisson-Dupuis, S, Bustamante, J, Puel, A, Ciancanelli, M, Meyts, I, Maniatis, T, Soumelis, V, Amara, A, Nussenzweig, M, García-Sastre, A, Krammer, F, Pujol, A, Duffy, D, Lifton, R, Zhang, S, Gorochov, G, Béziat, V, Jouanguy, E, Sancho-Shimizu, V, Rice, C, Abel, L, Notarangelo, L, Cobat, A, Su, H, Casanova, J, Pesci, A, Neurology, AII - Infectious diseases, ANS - Neuroinfection & -inflammation, Infectious diseases, ACS - Pulmonary hypertension & thrombosis, Intensive Care Medicine, ACS - Heart failure & arrhythmias, Anesthesiology, ACS - Diabetes & metabolism, ACS - Microcirculation, UKRI Future Leader's Fellowship, Internal medicine, Pulmonary medicine, Intensive care medicine, Pathology, Medical Microbiology and Infection Prevention, Amsterdam Reproduction & Development (AR&D), Amsterdam Neuroscience - Neuroinfection & -inflammation, Laboratory Medicine, APH - Quality of Care, COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-19 Biobank, COVID Human Genetic Effort, NIAID-USUHS/TAGC COVID Immunity Group, Foti, G., Bellani, G., Citerio, G., Contro, E., Pesci, A., Valsecchi, M.G., Cazzaniga, M., Abad, J., Aguilera-Albesa, S., Akcan, O.M., Darazam, I.A., Aldave, J.C., Ramos, M.A., Nadji, S.A., Alkan, G., Allardet-Servent, J., Allende, L.M., Alsina, L., Alyanakian, M.A., Amador-Borrero, B., Amoura, Z., Antolí, A., Arslan, S., Assant, S., Auguet, T., Azot, A., Bajolle, F., Baldolli, A., Ballester, M., Feldman, H.B., Barrou, B., Beurton, A., Bilbao, A., Blanchard-Rohner, G., Blanco, I., Blandinières, A., Blazquez-Gamero, D., Bloomfield, M., Bolivar-Prados, M., Borie, R., Bosteels, C., Bousfiha, A.A., Bouvattier, C., Boyarchuk, O., Bueno, MRP, Bustamante, J., Cáceres Agra, J.J., Calimli, S., Capra, R., Carrabba, M., Casasnovas, C., Caseris, M., Castelle, M., Castelli, F., de Vera, M.C., Castro, M.V., Catherinot, E., Chalumeau, M., Charbit, B., Cheng, M.P., Clavé, P., Clotet, B., Codina, A., Colkesen, F., Çölkesen, F., Colobran, R., Comarmond, C., Dalmau, D., Darley, D.R., Dauby, N., Dauger, S., de Pontual, L., Dehban, A., Delplancq, G., Demoule, A., Diehl, J.L., Dobbelaere, S., Durand, S., Eldars, W., Elgamal, M., Elnagdy, M.H., Emiroglu, M., Erdeniz, E.H., Aytekin, S.E., Euvrard, R., Evcen, R., Fabio, G., Faivre, L., Falck, A., Fartoukh, M., Faure, M., Arquero, M.F., Flores, C., Francois, B., Fumadó, V., Fusco, F., Solis, B.G., Gaussem, P., Gil-Herrera, J., Gilardin, L., Alarcon, M.G., Girona-Alarcón, M., Goffard, J.C., Gok, F., González-Montelongo, R., Guerder, A., Gul, Y., Guner, S.N., Gut, M., Hadjadj, J., Haerynck, F., Halwani, R., Hammarström, L., Hatipoglu, N., Hernandez-Brito, E., Heijmans, C., Holanda-Peña, M.S., Horcajada, J.P., Hoste, L., Hoste, E., Hraiech, S., Humbert, L., Iglesias, A.D., Íñigo-Campos, A., Jamme, M., Arranz, M.J., Jordan, I., Jorens, P., Kanat, F., Kapakli, H., Kara, I., Karbuz, A., Yasar, K.K., Keles, S., Demirkol, Y.K., Klocperk, A., Król, Z.J., Kuentz, P., Kwan, YWM, Lagier, J.C., Lambrecht, B.N., Lau, Y.L., Le Bourgeois, F., Leo, Y.S., Lopez, R.L., Leung, D., Levin, M., Levy, M., Lévy, R., Li, Z., Linglart, A., Loeys, B., Lorenzo-Salazar, J.M., Louapre, C., Lubetzki, C., Luyt, C.E., Lye, D.C., Mansouri, D., Marjani, M., Pereira, J.M., Martin, A., Pueyo, D.M., Martinez-Picado, J., Marzana, I., Mathian, A., Matos, LRB, Matthews, G.V., Mayaux, J., Mège, J.L., Melki, I., Meritet, J.F., Metin, O., Meyts, I., Mezidi, M., Migeotte, I., Millereux, M., Mirault, T., Mircher, C., Mirsaeidi, M., Melián, A.M., Martinez, A.M., Morange, P., Mordacq, C., Morelle, G., Mouly, S., Muñoz-Barrera, A., Naesens, L., Nafati, C., Neves, J.F., Ng, LFP, Medina, Y.N., Cuadros, E.N., Ocejo-Vinyals, J.G., Orbak, Z., Oualha, M., Özçelik, T., Pan-Hammarström, Q., Parizot, C., Pascreau, T., Paz-Artal, E., Pellegrini, S., de Diego, R.P., Philippe, A., Philippot, Q., Planas-Serra, L., Ploin, D., Poissy, J., Poncelet, G., Pouletty, M., Quentric, P., Raoult, D., Rebillat, A.S., Reisli, I., Ricart, P., Richard, J.C., Rivet, N., Rivière, J.G., Blanch, G.R., Rodrigo, C., Rodriguez-Gallego, C., Rodríguez-Palmero, A., Romero, C.S., Rothenbuhler, A., Rozenberg, F., Ruiz Del Prado, M.Y., Riera, J.S., Sanchez, O., Sánchez-Ramón, S., Schluter, A., Schmidt, M., Schweitzer, C.E., Scolari, F., Sediva, A., Seijo, L.M., Sene, D., Senoglu, S., Seppänen, MRJ, Ilovich, A.S., Shahrooei, M., Slabbynck, H., Smadja, D.M., Sobh, A., Moreno, X.S., Solé-Violán, J., Soler, C., Soler-Palacín, P., Stepanovskiy, Y., Stoclin, A., Taccone, F., Tandjaoui-Lambiotte, Y., Taupin, J.L., Tavernier, S.J., Terrier, B., Thumerelle, C., Tomasoni, G., Toubiana, J., Alvarez, J.T., Trouillet-Assant, S., Troya, J., Tucci, A., Ursini, M.V., Uzunhan, Y., Vabres, P., Valencia-Ramos, J., Van Braeckel, E., Van de Velde, S., Van Den Rym, A.M., Van Praet, J., Vandernoot, I., Vatansev, H., Vélez-Santamaria, V., Viel, S., Vilain, C., Vilaire, M.E., Vincent, A., Voiriot, G., Vuotto, F., Yosunkaya, A., Young, B.E., Yucel, F., Zannad, F., Zatz, M., Belot, A., Bole-Feysot, C., Lyonnet, S., Masson, C., Nitschke, P., Pouliet, A., Schmitt, Y., Tores, F., Zarhrate, M., Abel, L., Andrejak, C., Angoulvant, F., Bachelet, D., Basmaci, R., Behillil, S., Beluze, M., Benkerrou, D., Bhavsar, K., Bompart, F., Bouadma, L., Bouscambert, M., Caralp, M., Cervantes-Gonzalez, M., Chair, A., Coelho, A., Couffignal, C., Couffin-Cadiergues, S., D'Ortenzio, E., Da Silveira, C., Debray, M.P., Deplanque, D., Descamps, D., Desvallées, M., Diallo, A., Diouf, A., Dorival, C., Dubos, F., Duval, X., Eloy, P., Enouf, V.V., Esperou, H., Esposito-Farese, M., Etienne, M., Ettalhaoui, N., Gault, N., Gaymard, A., Ghosn, J., Gigante, T., Gorenne, I., Guedj, J., Hoctin, A., Hoffmann, I., Jaafoura, S., Kafif, O., Kaguelidou, F., Kali, S., Khalil, A., Khan, C., Laouénan, C., Laribi, S., Le, M., Le Hingrat, Q., Le Mestre, S., Le Nagard, H., Lescure, F.X., Lévy, Y., Levy-Marchal, C., Lina, B., Lingas, G., Lucet, J.C., Malvy, D., Mambert, M., Mentré, F., Mercier, N., Meziane, A., Mouquet, H., Mullaert, J., Neant, N., Noret, M., Pages, J., Papadopoulos, A., Paul, C., Peiffer-Smadja, N., Petrov-Sanchez, V., Peytavin, G., Picone, O., Puéchal, O., Rosa-Calatrava, M., Rossignol, B., Rossignol, P., Roy, C., Schneider, M., Semaille, C., Mohammed, N.S., Tagherset, L., Tardivon, C., Tellier, M.C., Téoulé, F., Terrier, O., Timsit, J.F., Trioux, T., Tual, C., Tubiana, S., van der Werf, S., Vanel, N., Veislinger, A., Visseaux, B., Wiedemann, A., Yazdanpanah, Y., Alavoine, L., Amat, KKA, Bielicki, J., Bruijning, P., Burdet, C., Caumes, E., Charpentier, C., Coignard, B., Costa, Y., Damond, F., Dechanet, A., Delmas, C., Ecobichon, J.L., Enouf, V., Espérou, H., Frezouls, W., Houhou, N., Ilic-Habensus, E., Kikoine, J., Lebeaux, D., Leclercq, A., Lehacaut, J., Letrou, S., Manchon, P., Mandic, M., Meghadecha, M., Motiejunaite, J., Nouroudine, M., Piquard, V., Postolache, A., Quintin, C., Rexach, J., Roufai, L., Terzian, Z., Thy, M., Vignali, V., van Agtmael, M., Algera, A.G., van Baarle, F., Bax, D., Beudel, M., Bogaard, H.J., Bomers, M., Bos, L., Botta, M., de Brabander, J., de Bree, G., Brouwer, M.C., de Bruin, S., Bugiani, M., Bulle, E., Chouchane, O., Cloherty, A., Elbers, P., Fleuren, L., Geerlings, S., Geerts, B., Geijtenbeek, T., Girbes, A., Goorhuis, B., Grobusch, M.P., Hafkamp, F., Hagens, L., Hamann, J., Harris, V., Hemke, R., Hermans, S.M., Heunks, L., Hollmann, M.W., Horn, J., Hovius, J.W., de Jong, M.D., Koning, R., van Mourik, N., Nellen, J., Paulus, F., Peters, E., van der Poll, T., Preckel, B., Prins, J.M., Raasveld, J., Reijnders, T., Schinkel, M., Schultz, M.J., Schuurman, A., Sigaloff, K., Smit, M., Stijnis, C.S., Stilma, W., Teunissen, C., Thoral, P., Tsonas, A., van der Valk, M., Veelo, D., Vlaar, APJ, de Vries, H., van Vugt, M., Wiersinga, W.J., Wouters, D., Zwinderman, AHK, van de Beek, D., Aiuti, A., Al Muhsen, S., Al-Mulla, F., Anderson, M.S., Arias, A.A., Bogunovic, D., Bolze, A., Bondarenko, A., Brodin, P., Bryceson, Y., Bustamante, C.D., Butte, M., Casari, G., Chakravorty, S., Christodoulou, J., Cirulli, E., Condino-Neto, A., Cooper, M.A., Dalgard, C.L., David, A., DeRisi, J.L., Desai, M., Drolet, B.A., Espinosa, S., Fellay, J., Franco, J.L., Gregersen, P.K., Hagin, D., Heath, J., Henrickson, S.E., Hsieh, E., Imai, K., Itan, Y., Karamitros, T., Kisand, K., Ku, C.L., Ling, Y., Lucas, C.L., Maniatis, T., Marodi, L., Milner, J., Mironska, K., Mogensen, T., Morio, T., Notarangelo, L.D., Novelli, A., Novelli, G., O'Farrelly, C., Okada, S., Ozcelik, T., Planas, A.M., Prando, C., Pujol, A., Quintana-Murci, L., Renia, L., Renieri, A., Rodríguez-Gallego, C., Sancho-Shimizu, V., Sankaran, V., Barrett, K.S., Snow, A., Spaan, A.N., Tangye, S., Turvey, S., Uddin, F., Uddin, M.J., Vazquez, S.E., Vinh, D.C., von Bernuth, H., Washington, N., Zawadzki, P., Su, H.C., Casanova, J.L., Jing, H., Tung, W., Luthers, C.R., Bauman, B.M., Shafer, S., Zheng, L., Zhang, Z., Kubo, S., Chauvin, S.D., Meguro, K., Shaw, E., Lenardo, M., Lack, J., Karlins, E., Hupalo, D.M., Rosenberger, J., Sukumar, G., Wilkerson, M.D., Zhang, X., Children's Hospital, HUS Children and Adolescents, Clinicum, Department of Medicine, Zhang, Q., Liu, Z., Moncada-Velez, M., Chen, J., Ogishi, M., Bigio, B., Yang, R., Arias, A. A., Zhou, Q., Han, J. E., Ugurbil, A. C., Zhang, P., Rapaport, F., Li, J., Spaan, A. N., Boisson, B., Boisson-Dupuis, S., Puel, A., Ciancanelli, M. J., Zhang, S. -Y., Beziat, V., Jouanguy, E., Cobat, A., Casanova, J. -L., Bastard, P., Korol, C., Rosain, J., Chbihi, M., Lorenzo, L., Bizien, L., Neehus, A. -L., Kerner, G., Seeleuthner, Y., Manry, J., Le Voyer, T., Le Pen, J., Schneider, W. M., Razooky, B. S., Hoffmann, H. -H., Michailidis, E., Rice, C. M., Sabli, I. K. D., Hodeib, S., Bilguvar, K., Ye, J., Zhang, Y., Notarangelo, L. D., Su, H. C., Onodi, F., Korniotis, S., Karpf, L., Soumelis, V., Bonnet-Madin, L., Amara, A., Dorgham, K., Gorochov, G., Smith, N., Duffy, D., Moens, L., Meade, P., Garcia-Sastre, A., Krammer, F., Corneau, A., Khan, T., Marr, N., Roussel, L., Vinh, D. C., Alosaimi, M. F., Alsohime, F., Hasanato, R., Al-Saud, H., Almourfi, F., Al-Muhsen, S. Z., Al Turki, S., Biondi, A., Bettini, L. R., D'Angio, M., Bonfanti, P., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Oler, A. J., Tompkins, M. F., Alba, C., Dalgard, C. L., Smits, G., Goffard, J. -C., Soler-Palacin, P., Martin-Nalda, A., Morange, P. -E., Yasar, K. K., Karabela, S. N., Laouenan, C., Snow, A. L., Milner, J. D., Mogensen, T. H., Nussenzweig, M., Lifton, R. P., Valsecchi, M. G., Akcan, O. M., Darazam, I. A., Aldave, J. C., Ramos, M. A., Nadji, S. A., Allende, L. M., Alyanakian, M. -A., Antoli, A., Blanch, G. R., Riera, J. S., Moreno, X. S., Levy, R., Feldman, H. B., Blandinieres, A., Clave, P., Lambrecht, B. N., van Braeckel, E., Bousfiha, A. A., Bueno, M. R. P., Castro, M. V., Matos, L. R. B., Agra, J. J. C., Velez-Santamaria, V., de Vera, M. C., Cheng, M. P., Darley, D. R., Diehl, J. -L., Rebillat, A. -S., Vilaire, M. E., Elnagdy, M. H., Erdeniz, E. H., Aytekin, S. E., Arquero, M. F., Fumado, V., Ursini, M. V., Solis, B. G., de Diego, R. P., van Den Rym, A. M., Alarcon, M. G., Girona-Alarcon, M., Gonzalez-Montelongo, R., Inigo-Campos, A., Lorenzo-Salazar, J. M., Munoz-Barrera, A., Guner, S. N., Hammarstrom, L., Holanda-Pena, M. S., Horcajada, J. P., Iglesias, A. D., Arranz, M. J., Demirkol, Y. K., Krol, Z. J., Kwan, Y. W. M., Lagier, J. -C., Lau, Y. -L., Leo, Y. -S., Young, B. E., Lopez, R. L., Luyt, C. -E., Lye, D. C., Pereira, J. M., Pueyo, D. M., Matthews, G. V., Mege, J. -L., Meritet, J. -F., Melian, A. M., Martinez, A. M., Neves, J. F., Ng, L. F. P., Medina, Y. N., Cuadros, E. N., Gonzalo Ocejo-Vinyals, J., Pan-Hammarstrom, Q., Richard, J. -C., Riviere, J. G., Rodriguez-Palmero, A., Romero, C. S., del Prado, M. Y. R., Sanchez-Ramon, S., Schweitzer, C. E., Seijo, L. M., Seppanen, M. R. J., Ilovich, A. S., Smadja, D. M., Sole-Violan, J., Taupin, J. -L., Tavernier, S. J., Alvarez, J. T., van de Velde, S., van Praet, J., Silveira, C. D., Debray, M. -P., Lescure, F. -X., Lucet, J. C., Mentre, F., Mohammed, N. S., Tellier, M. -C., Timsit, J. -F., Teoule, F., Puechal, O., Desvallees, M., Enouf, V. V. E., Levy, Y., Ecobichon, J. -L., Amat, K. K. A., Lucet, J. -C., Grobusch, M. P., Hermans, S. M., Hovius, J. W., Prins, J. M., Stijnis, C. S., Joost Wiersinga, W., Algera, A. G., Schultz, M. J., Brouwer, M. C., Bogaard, H. J., Hollmann, M. W., de Jong, M. D., Vlaar, A. P. J., Zwinderman, A. H., Muhsen, S. A., Anderson, M. S., Barrett, K. S., Bustamante, C. D., Cooper, M. A., Derisi, J. L., Drolet, B. A., Franco, J. L., Gregersen, P. K., Henrickson, S. E., Ku, C. -L., Lucas, C. L., Planas, A. M., Uddin, M. J., Vazquez, S. E., Chauvin, S. D., Luthers, C. R., Bauman, B. M., Hupalo, D. M., Wilkerson, M. D., Zhang, Qian [0000-0002-9040-3289], Bastard, Paul [0000-0002-5926-8437], Le Pen, Jeremie [0000-0001-7025-9526], Moncada-Velez, Marcela [0000-0002-3073-5345], Ogishi, Masato [0000-0003-2421-7389], Sabli, Ira K. D. [0000-0002-0170-2990], Hodeib, Stephanie [0000-0002-5978-6189], Korol, Cecilia [0000-0002-0023-8823], Bilguvar, Kaya [0000-0002-7313-7652], Bolze, Alexandre [0000-0001-7399-2766], Bigio, Benedetta [0000-0001-7291-5638], Yang, Rui [0000-0003-4427-2158], Arias, Andrés Augusto [0000-0002-9478-8403], Zhou, Qinhua [0000-0002-5112-3727], Chbihi, Marwa [0000-0002-2771-851X], Bonnet-Madin, Lucie [0000-0002-9848-3287], Dorgham, Karim [0000-0001-9539-3203], Smith, Nikaïa [0000-0002-0202-612X], Schneider, William M. [0000-0001-9407-6118], Razooky, Brandon S. [0000-0002-5263-1512], Hoffmann, Hans-Heinrich [0000-0003-0554-0244], Michailidis, Eleftherios [0000-0002-9907-4346], Han, Jin Eun [0000-0003-1112-9320], Lorenzo, Lazaro [0000-0001-6648-8684], Bizien, Lucy [0000-0001-9163-9122], Meade, Philip [0000-0002-6754-7209], Neehus, Anna-Lena [0000-0002-8573-6820], Ugurbil, Aileen Camille [0000-0002-9450-3092], Kerner, Gaspard [0000-0003-0146-9428], Zhang, Peng [0000-0002-6129-567X], Rapaport, Franck [0000-0001-6553-2110], Manry, Jérémy [0000-0001-5998-2051], Masson, Cecile [0000-0001-7870-7821], Schlüter, Agatha [0000-0001-6732-1528], Le Voyer, Tom [0000-0002-0630-8626], Khan, Taushif [0000-0002-7917-8965], Fellay, Jacques [0000-0002-8240-939X], Roussel, Lucie [0000-0001-5355-702X], Alosaimi, Mohammed F. [0000-0002-8025-3491], Al-Mulla, Fahd [0000-0001-5409-3829], Almourfi, Feras [0000-0002-5166-4662], Alsohime, Fahad [0000-0002-4979-3895], Al Turki, Saeed [0000-0001-7017-336X], Hasanato, Rana [0000-0002-4697-2222], Beek, Diederik van der [0000-0002-4571-044X], Bettini, Laura Rachele [0000-0002-0280-1704], Bonfanti, Paolo [0000-0001-7289-8823], Oler, Andrew J. [0000-0002-6310-0434], Tompkins, Miranda F. [0000-0003-2941-7515], Alba, Camille [0000-0002-0458-1629], Smits, Guillaume [0000-0003-2845-6758], Soler-Palacín, Pere [0000-0002-0346-5570], Martin-Nalda, Andrea [0000-0002-3590-0186], Colobran, Roger [0000-0002-5964-536X], Çölkesen, Fatma [0000-0001-9545-5179], Yasar, Kadriye Kart [0000-0003-2963-4894], Senoglu, Sevtap [0000-0003-4796-9583], Karabela, Şemsi Nur [0000-0003-2562-3004], Rodríguez-Gallego, Carlos [0000-0002-4344-8644], Novelli, Giuseppe [0000-0002-7781-602X], Tandjaoui-Lambiotte, Yacine [0000-0003-1123-4788], and Laouénan, Cédric [0000-0002-3681-6314]
- Subjects
Male ,COVID19 ,Interferon Regulatory Factor-7 ,[SDV]Life Sciences [q-bio] ,NF-KAPPA-B ,Receptor, Interferon alpha-beta ,SUSCEPTIBILITY ,susceptibility ,Interferon alpha-beta ,CoV-Contact Cohort ,0302 clinical medicine ,Interferon ,Loss of Function Mutation ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,80 and over ,Medicine and Health Sciences ,Viral ,Online ,Imagine COVID Group ,Child ,Adolescent ,Adult ,Aged ,Aged, 80 and over ,Alleles ,Asymptomatic Infections ,Betacoronavirus ,COVID-19 ,Child, Preschool ,Coronavirus Infections/genetics ,Coronavirus Infections/immunology ,Female ,Genetic Loci ,Genetic Predisposition to Disease ,Humans ,Infant ,Interferon Regulatory Factor-7/deficiency ,Interferon Regulatory Factor-7/genetics ,Interferon Type I/immunology ,Middle Aged ,Pandemics ,Pneumonia, Viral/genetics ,Pneumonia, Viral/immunology ,Receptor, Interferon alpha-beta/deficiency ,Receptor, Interferon alpha-beta/genetics ,SARS-CoV-2 ,Toll-Like Receptor 3/deficiency ,Toll-Like Receptor 3/genetics ,Young Adult ,Research Articles ,0303 health sciences ,Multidisciplinary ,COVID Clinicians ,deficiency ,3. Good health ,Multidisciplinary Sciences ,DEFICIENCY ,Settore MED/03 ,030220 oncology & carcinogenesis ,Interferon Type I ,Science & Technology - Other Topics ,medicine.symptom ,Coronavirus Infections ,Receptor ,medicine.drug ,NIAID-USUHS ,Research Article ,General Science & Technology ,HERPES-SIMPLEX ENCEPHALITIS ,French COVID Cohort Study Group ,Pneumonia, Viral ,Immunology ,Asymptomatic ,Virus ,03 medical and health sciences ,Immunity ,nf-kappa-b ,medicine ,Genetics ,Preschool ,COVID Human Genetic Effort ,030304 developmental biology ,Biobank ,Science & Technology ,business.industry ,R-Articles ,TAGC COVID Immunity Group ,Médecine pathologie humaine ,herpes-simplex encephalitis ,Pneumonia ,Amsterdam UMC Covid-19 ,medicine.disease ,COVID-STORM Clinicians ,Toll-Like Receptor 3 ,3121 General medicine, internal medicine and other clinical medicine ,IRF7 ,3111 Biomedicine ,business ,Interferon type I ,Interferon regulatory factors - Abstract
COVID-STORM Clinicians Giuseppe Foti1, Giacomo Bellani 1, Giuseppe Citerio1, Ernesto Contro1, Alberto Pesci2, Maria Grazia Valsecchi3, Marina Cazzaniga4 1Department of Emergency, Anesthesia and Intensive Care, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 2Department of Pneumology, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 3Center of Bioinformatics and Biostatistics, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 4Phase I Research Center, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza IT, COVID Clinicians Jorge Abad1, Sergio Aguilera-Albesa2, Ozge Metin Akcan3, Ilad Alavi Darazam4, Juan C. Aldave5, Miquel Alfonso Ramos6, Seyed Alireza Nadji7, Gulsum Alkan8, Jerome Allardet-Servent9, Luis M. Allende10, Laia Alsina11, Marie-Alexandra Alyanakian12, Blanca Amador-Borrero13, Zahir Amoura14, Arnau Antolí15, Sevket Arslan16, Sophie Assant17, Terese Auguet18, Axelle Azot19, Fanny Bajolle20, Aurélie Baldolli21, Maite Ballester22, Hagit Baris Feldman23, Benoit Barrou24, Alexandra Beurton25, Agurtzane Bilbao26, Geraldine Blanchard-Rohner27, Ignacio Blanco1, Adeline Blandinières28, Daniel Blazquez-Gamero29, Marketa Bloomfield30, Mireia Bolivar-Prados31, Raphael Borie32, Cédric Bosteels33, Ahmed A. Bousfiha34, Claire Bouvattier35, Oksana Boyarchuk36, Maria Rita P. Bueno37, Jacinta Bustamante20, Juan José Cáceres Agra38, Semra Calimli39, Ruggero Capra40, Maria Carrabba41, Carlos Casasnovas42, Marion Caseris43, Martin Castelle44, Francesco Castelli45, Martín Castillo de Vera46, Mateus V. Castro37, Emilie Catherinot47, Martin Chalumeau48, Bruno Charbit49, Matthew P. Cheng50, Père Clavé31, Bonaventura Clotet51, Anna Codina52, Fatih Colkesen53, Fatma Çölkesen54, Roger Colobran55, Cloé Comarmond56, David Dalmau57, David Ross Darley58, Nicolas Dauby59, Stéphane Dauger60, Loic de Pontual61, Amin Dehban62, Geoffroy Delplancq63, Alexandre Demoule64, Jean-Luc Diehl65, Stephanie Dobbelaere66, Sophie Durand67, Waleed Eldars68, Mohamed Elgamal69, Marwa H. Elnagdy70, Melike Emiroglu71, Emine Hafize Erdeniz72, Selma Erol Aytekin73, Romain Euvrard74, Recep Evcen75, Giovanna Fabio41, Laurence Faivre76, Antonin Falck43, Muriel Fartoukh77, Morgane Faure78, Miguel Fernandez Arquero79, Carlos Flores80, Bruno Francois81, Victoria Fumadó82, Francesca Fusco83, Blanca Garcia Solis84, Pascale Gaussem85, Juana Gil-Herrera86, Laurent Gilardin87, Monica Girona Alarcon88, Mònica Girona-Alarcón88, Jean-Christophe Goffard89, Funda Gok90, Rafaela González-Montelongo91, Antoine Guerder92, Yahya Gul93, Sukru Nail Guner93, Marta Gut94, Jérôme Hadjadj95, Filomeen Haerynck96, Rabih Halwani97, Lennart Hammarström98, Nevin Hatipoglu99, Elisa Hernandez-Brito100, Cathérine Heijmans101, María Soledad Holanda-Peña102, Juan Pablo Horcajada103, Levi Hoste104, Eric Hoste105, Sami Hraiech106, Linda Humbert107, Alejandro D. Iglesias108, Antonio Íñigo-Campos91, Matthieu Jamme109, María Jesús Arranz110, Iolanda Jordan111, Philippe Jorens112, Fikret Kanat113, Hasan Kapakli114, Iskender Kara115, Adem Karbuz116, Kadriye Kart Yasar117, Sevgi Keles118, Yasemin Kendir Demirkol119, Adam Klocperk120, Zbigniew J. Król121, Paul Kuentz122, Yat Wah M. Kwan123, Jean-Christophe Lagier124, Bart N. Lambrecht33, Yu-Lung Lau125, Fleur Le Bourgeois60, Yee-Sin Leo126, Rafael Leon Lopez127, Daniel Leung125, Michael Levin128, Michael Levy60, Romain Lévy20, Zhi Li49, Agnes Linglart129, Bart Loeys130, José M. Lorenzo-Salazar91, Céline Louapre131, Catherine Lubetzki131, Charles-Edouard Luyt132, David C. Lye133, Davood Mansouri134, Majid Marjani135, Jesus Marquez Pereira136, Andrea Martin137, David Martínez Pueyo138, Javier Martinez-Picado139, Iciar Marzana140, Alexis Mathian14, Larissa R. B. Matos37, Gail V. Matthews141, Julien Mayaux142, Jean-Louis Mège143, Isabelle Melki144, Jean-François Meritet145, Ozge Metin146, Isabelle Meyts147, Mehdi Mezidi148, Isabelle Migeotte149, Maude Millereux150, Tristan Mirault151, Clotilde Mircher67, Mehdi Mirsaeidi152, Abián Montesdeoca Melián153, Antonio Morales Martinez154, Pierre Morange155, Clémence Mordacq107, Guillaume Morelle156, Stéphane Mouly13, Adrián Muñoz-Barrera91, Leslie Naesens157, Cyril Nafati158, João Farela Neves159, Lisa FP. Ng160, Yeray Novoa Medina161, Esmeralda Nuñez Cuadros162, J. Gonzalo Ocejo-Vinyals163, Zerrin Orbak164, Mehdi Oualha20, Tayfun Özçelik165, Qiang Pan-Hammarström166, Christophe Parizot142, Tiffany Pascreau167, Estela Paz-Artal168, Sandra Pellegrini49, Rebeca Pérez de Diego84, Aurélien Philippe169, Quentin Philippot77, Laura Planas-Serra170, Dominique Ploin171, Julien Poissy172, Géraldine Poncelet43, Marie Pouletty173, Paul Quentric142, Didier Raoult143, Anne-Sophie Rebillat67, Ismail Reisli174, Pilar Ricart175, Jean-Christophe Richard176, Nadia Rivet28, Jacques G. Rivière177, Gemma Rocamora Blanch15, Carlos Rodrigo1, Carlos Rodriguez-Gallego178, Agustí Rodríguez-Palmero179, Carolina Soledad Romero180, Anya Rothenbuhler181, Flore Rozenberg182, Maria Yolanda Ruiz del Prado183, Joan Sabater Riera15, Oliver Sanchez184, Silvia Sánchez-Ramón185, Agatha Schluter170, Matthieu Schmidt186, Cyril E. Schweitzer187, Francesco Scolari188, Anna Sediva189, Luis M. Seijo190, Damien Sene13, Sevtap Senoglu117, Mikko R. J. Seppänen191, Alex Serra Ilovich192, Mohammad Shahrooei62, Hans Slabbynck193, David M. Smadja194, Ali Sobh195, Xavier Solanich Moreno15, Jordi Solé-Violán196, Catherine Soler197, Pere Soler-Palacín137, Yuri Stepanovskiy198, Annabelle Stoclin199, Fabio Taccone149, Yacine Tandjaoui-Lambiotte200, Jean-Luc Taupin201, Simon J. Tavernier202, Benjamin Terrier203, Caroline Thumerelle107, Gabriele Tomasoni204, Julie Toubiana48, Josep Trenado Alvarez205, Sophie Trouillet-Assant206, Jesús Troya207, Alessandra Tucci208, Matilde Valeria Ursini83, Yurdagul Uzunhan209, Pierre Vabres210, Juan Valencia-Ramos211, Eva Van Braeckel33, Stijn Van de Velde212, Ana Maria Van Den Rym84, Jens Van Praet213, Isabelle Vandernoot214, Hulya Vatansev215, Valentina Vélez-Santamaria42, Sébastien Viel171, Cédric Vilain216, Marie E. Vilaire67, Audrey Vincent35, Guillaume Voiriot217, Fanny Vuotto107, Alper Yosunkaya90, Barnaby E. Young126, Fatih Yucel218, Faiez Zannad219, Mayana Zatz37, Alexandre Belot220*, Imagine COVID Group Christine Bole-Feysot, Stanislas Lyonnet*, Cécile Masson, Patrick Nitschke, Aurore Pouliet, Yoann Schmitt, Frederic Tores, Mohammed Zarhrate Imagine Institute, Université de Paris, INSERM UMR 1163, Paris, France. *Leader of the Imagine COVID Group., French COVID Cohort Study Group Laurent Abel1, Claire Andrejak2, François Angoulvant3, Delphine Bachelet4, Romain Basmaci5, Sylvie Behillil6, Marine Beluze7, Dehbia Benkerrou8, Krishna Bhavsar4, François Bompart9, Lila Bouadma4, Maude Bouscambert10, Mireille Caralp11, Minerva Cervantes-Gonzalez12, Anissa Chair4, Alexandra Coelho13, Camille Couffignal4, Sandrine Couffin-Cadiergues14, Eric D’Ortenzio12, Charlene Da Silveira4, Marie-Pierre Debray4, Dominique Deplanque15, Diane Descamps16, Mathilde Desvallées17, Alpha Diallo18, Alphonsine Diouf13, Céline Dorival8, François Dubos19, Xavier Duval4, Philippine Eloy4, Vincent VE Enouf20, Hélène Esperou21, Marina Esposito-Farese4, Manuel Etienne22, Nadia Ettalhaoui4, Nathalie Gault4, Alexandre Gaymard10, Jade Ghosn4, Tristan Gigante23, Isabelle Gorenne4, Jérémie Guedj24, Alexandre Hoctin13, Isabelle Hoffmann4, Salma Jaafoura21, Ouifiya Kafif4, Florentia Kaguelidou25, Sabina Kali4, Antoine Khalil4, Coralie Khan17, Cédric Laouénan4, Samira Laribi4, Minh Le4, Quentin Le Hingrat4, Soizic Le Mestre18, Hervé Le Nagard24, François-Xavier Lescure4, Yves Lévy26, Claire Levy-Marchal27, Bruno Lina10, Guillaume Lingas24, Jean Christophe Lucet4, Denis Malvy28, Marina Mambert13, France Mentré4, Noémie Mercier18, Amina Meziane8, Hugo Mouquet20, Jimmy Mullaert4, Nadège Neant24, Marion Noret29, Justine Pages30, Aurélie Papadopoulos21, Christelle Paul18, Nathan Peiffer-Smadja4, Ventzislava Petrov-Sanchez18, Gilles Peytavin4, Olivier Picone31, Oriane Puéchal12, Manuel Rosa-Calatrava10, Bénédicte Rossignol23, Patrick Rossignol32, Carine Roy4, Marion Schneider4, Caroline Semaille12, Nassima Si Mohammed4, Lysa Tagherset4, Coralie Tardivon4, Marie-Capucine Tellier4, François Téoulé8, Olivier Terrier10, Jean-François Timsit4, Théo Trioux4, Christelle Tual33, Sarah Tubiana4, Sylvie van der Werf34, Noémie Vanel35, Aurélie Veislinger33, Benoit Visseaux16, Aurélie Wiedemann26, Yazdan Yazdanpanah36 1Inserm UMR 1163, Paris, France. 2CHU Amiens, France. 3Hôpital Necker, Paris, France. 4Hôpital Bichat, Paris, France. 5Hôpital Louis Mourrier, Colombes, France. 6Institut Pasteur, Paris, France. 7F-CRIN Partners Platform, AP-HP, Université de Paris, Paris, France. 8Inserm UMR 1136, Paris, France. 9Drugs for Neglected Diseases Initiative, Geneva, Switzerland. 10Inserm UMR 1111, Lyon, France. 11Inserm Transfert, Paris, France. 12REACTing, Paris, France. 13Inserm UMR 1018, Paris, France. 14Inserm, Pôle Recherche Clinique, Paris, France. 15CIC 1403 Inserm-CHU Lille, Paris, France. 16Université de Paris, IAME, INSERM UMR 1137, AP-HP, University Hospital Bichat Claude Bernard, Virology, Paris, France. 17Inserm UMR 1219, Bordeaux, France. 18ANRS, Paris, France. 19CHU Lille, Lille, France. 20Pasteur Institute, Paris, France. 21Inserm sponsor, Paris, France. 22CHU Rouen–SMIT, Rouen, France. 23FCRIN INI-CRCT, Nancy, France. 24Inserm UMR 1137, Paris, France. 25Centre d’Investigation Clinique, Inserm CIC1426, Hôpital Robert Debré, Paris, France. 26Inserm UMR 955, Créteil, France; Vaccine Research Instiute (VRI), Paris, France. 27F-CRIN INI-CRCT, Paris, France. 28CHU de Bordeaux–SMIT, Bordeaux, France. 29RENARCI, Annecy, France. 30Hôpital Robert Debré, Paris, France. 31Hôpital Louis Mourier–Gynécologie, Colombes, France. 32University of Lorraine, Plurithematic Clinical Investigation Centre Inserm CIC-P; 1433, Inserm U1116, CHRU Nancy Hopitaux de Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France. 33Inserm CIC-1414, Rennes, France. 34Institut Pasteur, UMR 3569 CNRS, Université de Paris, Paris, France. 35Hôpital la Timone, Marseille, France. 36Bichat–SMIT, Paris, France., CoV-Contact Cohort Loubna Alavoine1, Karine K. A. Amat2, Sylvie Behillil3, Julia Bielicki4, Patricia Bruijning5, Charles Burdet6, Eric Caumes7, Charlotte Charpentier8, Bruno Coignard9, Yolande Costa1, Sandrine Couffin-Cadiergues10, Florence Damond8, Aline Dechanet11, Christelle Delmas10, Diane Descamps8, Xavier Duval1, Jean-Luc Ecobichon1, Vincent Enouf3, Hélène Espérou10, Wahiba Frezouls1, Nadhira Houhou11, Emila Ilic-Habensus1, Ouifiya Kafif11, John Kikoine11, Quentin Le Hingrat8, David Lebeaux12, Anne Leclercq1, Jonathan Lehacaut1, Sophie Letrou1, Bruno Lina13, Jean-Christophe Lucet14, Denis Malvy15, Pauline Manchon11, Milica Mandic1, Mohamed Meghadecha16, Justina Motiejunaite17, Mariama Nouroudine1, Valentine Piquard11, Andreea Postolache11, Caroline Quintin1, Jade Rexach1, Layidé Roufai10, Zaven Terzian11, Michael Thy18, Sarah Tubiana1, Sylvie van der Werf3, Valérie Vignali1, Benoit Visseaux8, Yazdan Yazdanpanah14 1Centre d’Investigation Clinique, Inserm CIC 1425, Hôpital Bichat Claude Bernard, APHP, Paris, France. 2IMEA Fondation Léon M’Ba, Paris, France. 3Institut Pasteur, UMR 3569 CNRS, Université de Paris, Paris, France. 4University of Basel Children’s Hospital. 5Julius Center for Health Sciences and Primary Care, Utrecht, Netherlands. 6Université de Paris, IAME, Inserm UMR 1137, F-75018, Paris, France, Hôpital Bichat Claude Bernard, APHP, Paris, France. 7Hôpital Pitiè Salpétriere, APHP, Paris. 8Université de Paris, IAME, INSERM UMR 1137, AP-HP, University Hospital Bichat Claude Bernard, Virology, Paris, France. 9Santé Publique France, Saint Maurice, France. 10Pole Recherche Clinique, Inserm, Paris, France. 11Hôpital Bichat Claude Bernard, APHP, Paris, France. 12APHP, Paris, France. 13Virpath Laboratory, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France. 14IAME Inserm UMR 1138, Hôpital Bichat Claude Bernard, APHP, Paris, France. 15Service des Maladies Infectieuses et Tropicales; Groupe Pellegrin-Place Amélie-Raba-Léon, Bordeaux, France. 16Hôpital Hotel Dieu, APHP, Paris, France. 17Service des Explorations Fonctionnelles, Hôpital Bichat–Claude Bernard, APHP, Paris, France. 18Center for Clinical Investigation, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France., Amsterdam UMC Covid-19 Biobank Michiel van Agtmael1, Anna Geke Algera2, Frank van Baarle2, Diane Bax3, Martijn Beudel4, Harm Jan Bogaard5, Marije Bomers1, Lieuwe Bos2, Michela Botta2, Justin de Brabander6, Godelieve de Bree6, Matthijs C. Brouwer4, Sanne de Bruin2, Marianna Bugiani7, Esther Bulle2, Osoul Chouchane1, Alex Cloherty3, Paul Elbers2, Lucas Fleuren2, Suzanne Geerlings1, Bart Geerts8, Theo Geijtenbeek9, Armand Girbes2, Bram Goorhuis1, Martin P. Grobusch1, Florianne Hafkamp9, Laura Hagens2, Jorg Hamann10, Vanessa Harris1, Robert Hemke11, Sabine M. Hermans1, Leo Heunks2, Markus W. Hollmann8, Janneke Horn2, Joppe W. Hovius1, Menno D. de Jong12, Rutger Koning4, Niels van Mourik2, Jeaninne Nellen1, Frederique Paulus2, Edgar Peters1, Tom van der Poll1, Benedikt Preckel8, Jan M. Prins1, Jorinde Raasveld2, Tom Reijnders1, Michiel Schinkel1, Marcus J. Schultz2, Alex Schuurman13, Kim Sigaloff1, Marry Smit2, Cornelis S. Stijnis1, Willemke Stilma2, Charlotte Teunissen14, Patrick Thoral2, Anissa Tsonas2, Marc van der Valk1, Denise Veelo8, Alexander P.J. Vlaar15, Heder de Vries2, Michèle van Vugt1, W. Joost Wiersinga1, Dorien Wouters16, A. H. (Koos) Zwinderman17, Diederik van de Beek4* 1Department of Infectious Diseases, Amsterdam UMC, Amsterdam, Netherlands. 2Department of Intensive Care, Amsterdam UMC, Amsterdam, Netherlands. 3Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands. 4Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Netherlands. 5Department of Pulmonology, Amsterdam UMC, Amsterdam, Netherlands. 6Department of Infectious Diseases, Amsterdam UMC, Amsterdam, Netherlands. 7Department of Pathology, Amsterdam UMC, Amsterdam, Netherlands. 8Department of Anesthesiology, Amsterdam UMC, Amsterdam, Netherlands. 9Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands. 10Amsterdam UMC Biobank Core Facility, Amsterdam UMC, Amsterdam, Netherlands. 11Department of Radiology, Amsterdam UMC, Amsterdam, Netherlands. 12Department of Medical Microbiology, Amsterdam UMC, Amsterdam, Netherlands. 13Department of Internal Medicine, Amsterdam UMC, Amsterdam, Netherlands. 14Neurochemical Laboratory, Amsterdam UMC, Amsterdam, Netherlands. 15Department of Intensive Care, Amsterdam UMC, Amsterdam, Netherlands. 16Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, Netherlands. 17Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, Netherlands. 18Department of Neurology, Amsterdam UMC, Amsterdam, Netherlands. *Leader of the AMC Consortium., COVID Human Genetic Effort Laurent Abel1, Alessandro Aiuti2, Saleh Al Muhsen3, Fahd Al-Mulla4, Mark S. Anderson5, Andrés Augusto Arias6, Hagit Baris Feldman7, Dusan Bogunovic8, Alexandre Bolze9, Anastasiia Bondarenko10, Ahmed A. Bousfiha11, Petter Brodin12, Yenan Bryceson12, Carlos D. Bustamante13, Manish Butte14, Giorgio Casari15, Samya Chakravorty16, John Christodoulou17, Elizabeth Cirulli9, Antonio Condino-Neto18, Megan A. Cooper19, Clifton L. Dalgard20, Alessia David21, Joseph L. DeRisi22, Murkesh Desai23, Beth A. Drolet24, Sara Espinosa25, Jacques Fellay26, Carlos Flores27, Jose Luis Franco28, Peter K. Gregersen29, Filomeen Haerynck30, David Hagin31, Rabih Halwani32, Jim Heath33, Sarah E. Henrickson34, Elena Hsieh35, Kohsuke Imai36, Yuval Itan8, Timokratis Karamitros37, Kai Kisand38, Cheng-Lung Ku39, Yu-Lung Lau40, Yun Ling41, Carrie L. Lucas42, Tom Maniatis43, Davoud Mansouri44, Laszlo Marodi45, Isabelle Meyts46, Joshua Milner47, Kristina Mironska48, Trine Mogensen49, Tomohiro Morio50, Lisa FP. Ng51, Luigi D. Notarangelo52, Antonio Novelli53, Giuseppe Novelli54, Cliona O’Farrelly55, Satoshi Okada56, Tayfun Ozcelik57, Rebeca Perez de Diego58, Anna M. Planas59, Carolina Prando60, Aurora Pujol61, Lluis Quintana-Murci62, Laurent Renia63, Alessandra Renieri64, Carlos Rodríguez-Gallego65, Vanessa Sancho-Shimizu66, Vijay Sankaran67, Kelly Schiabor Barrett9, Mohammed Shahrooei68, Andrew Snow69, Pere Soler-Palacín70, András N. Spaan71, Stuart Tangye72, Stuart Turvey73, Furkan Uddin74, Mohammed J. Uddin75, Diederik van de Beek76, Sara E. Vazquez77, Donald C. Vinh78, Horst von Bernuth79, Nicole Washington9, Pawel Zawadzki80, Helen C. Su52, Jean-Laurent Casanova81 1INSERM U1163, University of Paris, Imagine Institute, Paris, France. 2San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, Milan, Italy. 3King Saud University, Riyadh, Saudi Arabia. 4Kuwait University, Kuwait City, Kuwait. 5University of California, San Francisco, San Francisco, CA, USA. 6Universidad de Antioquia, Group of Primary Immunodeficiencies, Antioquia, Colombia. 7The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 8Icahn School of Medicine at Mount Sinai, New York, NY, USA. 9Helix, San Mateo, CA, USA. 10Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine. 11Clinical Immunology Unit, Pediatric Infectious Disease Departement, Faculty of Medicine and Pharmacy, Averroes University Hospital; LICIA Laboratoire d’Immunologie Clinique, d’Inflammation et d’Allergie, Hassann Ii University, Casablanca, Morocco. 12Karolinska Institute, Stockholm, Sweden. 13Stanford University, Stanford, CA, USA. 14University of California, Los Angeles, CA, USA. 15Medical Genetics, IRCCS Ospedale San Raffaele, Milan, Italy. 16Emory University Department of Pediatrics and Children’s Healthcare of Atlanta, Atlanta, GA, USA. 17Murdoch Children’s Research Institute, Victoria, Australia. 18University of São Paulo, São Paulo, Brazil. 19Washington University School of Medicine, St. Louis, MO, USA. 20The American Genome Center; Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 21Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK. 22University of California, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA. 23Bai Jerbai Wadia Hospital for Children, Mumbai, India. 24School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA. 25Instituto Nacional de Pediatria (National Institute of Pediatrics), Mexico City, Mexico. 26Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland. 27Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Canarian Health System, Santa Cruz de Tenerife, Spain. 28University of Antioquia, Medellín, Colombia. 29Feinstein Institute for Medical Research, Northwell Health USA, Manhasset, NY, USA. 30Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG), PID Research Lab, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Edegem, Belgium. 31The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. 32Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE. 33Institute for Systems Biology, Seattle, WA, USA. 34Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 35Anschutz Medical Campus, Aurora, CO, USA. 36Riken, Tokyo, Japan. 37Hellenic Pasteur Institute, Athens, Greece. 38University of Tartu, Tartu, Estonia. 39Chang Gung University, Taoyuan County, Taiwan. 40The University of Hong Kong, Hong Kong, China. 41Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. 42Yale School of Medicine, New Haven, CT, USA. 43New York Genome Center, New York, NY, USA. 44Shahid Beheshti University of Medical Sciences, Tehran, Iran. 45Semmelweis University Budapest, Budapest, Hungary. 46KU Leuven, Department of Immunology, Microbiology and Transplantation, Leuven, Belgium. 47Columbia University Medical Center, New York, NY, USA. 48University Clinic for Children’s Diseases, Skopje, North Macedonia. 49Aarhus University, Aarhus, Denmark. 50Tokyo Medical & Dental University Hospital, Tokyo, Japan. 51Singapore Immunology Network, Singapore. 52National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. 53Bambino Gesù Children’s Hospital, Rome, Italy. 54Department of Biomedicine and Prevention, University of Rome “Tor Vergata,” Rome, Italy. 55Trinity College, Dublin, Ireland. 56Hiroshima University, Hiroshima, Japan. 57Bilkent University, Ankara, Turkey. 58Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain. 59IIBB-CSIC, IDIBAPS, Barcelona, Spain. 60Faculdades Pequeno Príncipe e Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil. 61Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; Catalan Institution for Research and Advanced Studies (ICREA); CIBERER U759, ISCiii Madrid Spain, Barcelona, Spain. 62Institut Pasteur (CNRS UMR2000) and Collège de France, Paris, France. 63Infectious Diseases Horizontal Technology Center and Singapore Immunology Network, Agency for Science Technology (A*STAR), Singapore. 64Medical Genetics, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy; GEN-COVID Multicenter Study. 65Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Canary Islands, Spain. 66Imperial College London, London, UK. 67Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA. 68Saeed Pathobiology and Genetic Lab, Tehran, Iran. 69Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 70Hospital Universitari Vall d’Hebron, Barcelona, Spain. 71University Medical Center Utrecht, Amsterdam, The Netherlands. 72Garvan Institute of Medical Research, Sydney, Australia. 73The University of British Columbia, Vancouver, Canada. 74Holy Family Red Crescent Medical College; Centre for Precision Therapeutics, NeuroGen Children’s Healthcare; Genetics and Genomic Medicine Centre, NeuroGen Children’s Healthcare, Dhaka, Bangladesh. 75Mohammed Bin Rashid University of Medicine and Health Sciences, College of Medicine, Dubai, UAE; The Centre for Applied Genomics, Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. 76Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, The Netherlands. 77University of California, San Francisco, CA, USA. 78McGill University Health Centre, Montreal, Canada. 79Charité–Berlin University Hospital Center, Berlin, Germany. 80Molecular Biophysics Division, Faculty of Physics, A. Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznań, Poland. 81Rockefeller University, Howard Hughes Medical Institute, Necker Hospital, New York, NY, USA. *Leaders of the COVID Human Genetic Effort., NIAID-USUHS/TAGC COVID Immunity Group Huie Jing1,2, Wesley Tung1,2, Christopher R. Luthers3, Bradly M. Bauman3, Samantha Shafer2,4, Lixin Zheng2,4, Zinan Zhang2,4, Satoshi Kubo2,4, Samuel D. Chauvin2,4, Kazuyuki Meguro1,2, Elana Shaw1,2, Michael Lenardo2,4, Justin Lack5, Eric Karlins6, Daniel M. Hupalo7, John Rosenberger7, Gauthaman Sukumar7, Matthew D. Wilkerson7, Xijun Zhang7 1Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA. 2NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD, USA. 3Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 4Laboratory of Immune System Biology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA. 5NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA. 6Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD, USA. 7The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA., Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection., We thank the generous donation from Fisher Center for Alzheimer’s Research Foundation for our research. The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1 TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the FRM and ANR GENCOVID project, ANRS-COV05, the Square Foundation, Grandir - Fonds de solidarité pour l’enfance, the SCOR Corporate Foundation for Science, Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Paris. The French COVID Cohort study group was sponsored by Inserm and supported by the REACTing consortium and by a grant from the French Ministry of Health (PHRC 20-0424). Regione Lombardia, Italy (project “Risposta immune in pazienti con COVID-19 e co-morbidità”), and the Intramural Research Program of the NIAID, NIH. The laboratory of Genomes & Cell Biology of Disease is supported by “Integrative Biology of Emerging Infectious Diseases” (grant no. ANR-10-LABX-62-IBEID), the “Fondation pour la Recherche Medicale” (grant FRM - EQU202003010193), the “Agence Nationale de la Recherche” (ANR FLASH COVID project IDISCOVR cofounded by the “Fondation pour la Recherche Médicale”), University of Paris (“Plan de Soutien Covid-19”: RACPL20FIR01-COVID-SOUL). IM is a senior clinical investigator with the FWO Vlaanderen; IM and LM are supported by FWO G0C8517N – GOB5120N. The VS team was supported by “Agence Nationale de la Recherche” (ANR-17-CE15-0003, ANR-17-CE15-0003-01), and by Université de Paris “PLAN D’URGENCE COVID19”. LK was supported by a fellowship from the French Ministry of Research. VS-S is supported by a UKRI Future Leaders Fellowship (MR/S032304/1). SZA-M is supported by the Elite Journals Program at King Saud University through grant number PEJP-16-107. JM lab is supported by Columbia University COVID biobank and grant: UL1TR001873. Work in the Laboratory of Virology and Infectious Disease was supported by NIH grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1, a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. JLP is supported by a European Molecular Biology Organization Long-Term Fellowship (ALTF 380-2018). Work at the Neurometabolic Diseases Laboratory received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 824110 (EasiGenomics grant COVID-19/ PID12342) to A.P., and Roche and Illumina Covid Match Funds to M.G.. C.R.G and colleagues are supported by cInstituto de Salud Carlos III (COV20_01333 and COV20_01334), Spanish Ministry of Science and Innovation, with the funding of European Regional Development Fund-European Social Fund -FEDER-FSE; (RTC-2017-6471-1; AEI/FEDER, UE), and Cabildo Insular de Tenerife (CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). D.C.V. is supported by the Fonds de la recherche en santé du Québec clinician-scientist scholar program. Helen Su is adjunct faculty at the University of Pennsylvania. A-L.N. was supported by the Foundation Bettencourt Schueller. The Amsterdam UMC Covid-19 Biobank was funded by the Netherlands Organization for Health Research and Development (ZonMw, NWO-vici 91819627), The Corona Research Fund (Amsterdam UMC), Dr. J. C. Vaillantfonds, and Amsterdam UMC. Work on COVID-19 at the AG-S lab is partly supported by NIH supplements to grants U19AI135972, U19AI142733 and R35 HL135834, and to contract HHSN272201800048C, by a DoD supplement to grant W81XWH-20-1-0270, by DARPA project HR0011-19-2-0020, by CRIP (Center for Research on Influenza Pathogenesis), a NIAID funded Center of Excellence for Influenza Research and Surveillance (CEIRS, contract HHSN272201400008C), by an NIAID funded Collaborative Influenza Vaccine Innovation Center (SEM-CIVIC, contract 75N93019C00051) and by the generous support of the JPB Foundation, the Open Philanthropy Project (research grant 2020-215611(5384)) and anonymous donors. The Virscan analysis presented in fig. S11 was performed with financial support from Sidra Medicine
- Published
- 2020
- Full Text
- View/download PDF
8. Innovative vaccine approaches-a Keystone Symposia report
- Author
-
Cable, J, Rappuoli, R, Klemm, EJ, Kang, G, Mutreja, A, Wright, GJ, Pizza, M, Castro, SA, Hoffmann, JP, Alter, G, Carfi, A, Pollard, AJ, Krammer, F, Gupta, RK, Wagner, CE, Machado, V, Modjarrad, K, Corey, L, Gilbert, PB, Dougan, G, Lurie, N, Bjorkman, PJ, Chiu, C, Nemes, E, Gordon, SB, Steer, AC, Rudel, T, Blish, CA, Sandberg, JT, Brennan, K, Klugman, KP, Stuart, LM, Madhi, SA, Karp, CL, Cable, J, Rappuoli, R, Klemm, EJ, Kang, G, Mutreja, A, Wright, GJ, Pizza, M, Castro, SA, Hoffmann, JP, Alter, G, Carfi, A, Pollard, AJ, Krammer, F, Gupta, RK, Wagner, CE, Machado, V, Modjarrad, K, Corey, L, Gilbert, PB, Dougan, G, Lurie, N, Bjorkman, PJ, Chiu, C, Nemes, E, Gordon, SB, Steer, AC, Rudel, T, Blish, CA, Sandberg, JT, Brennan, K, Klugman, KP, Stuart, LM, Madhi, SA, and Karp, CL
- Abstract
The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models. On June 28-30, 2021, experts in vaccine research, development, manufacturing, and deployment met virtually for the Keystone eSymposium "Innovative Vaccine Approaches" to discuss advances in vaccine research and development.
- Published
- 2022
9. The influence of structural racism, pandemic stress, and SARS-CoV-2 infection during pregnancy with adverse birth outcomes
- Author
-
Janevic, T., Lieb, W., Ibroci, E., Lynch, J., Lieber, M., Molenaar, N.M., Rommel, A.S., Witte, L.D. de, Ohrn, S., Carreño, J.M., Krammer, F., Zapata, L.B., Snead, M.C., Brody, R.I., Jessel, R.H., Sestito, S., Adler, A., Afzal, O., Gigase, F., Missall, R., Carrión, D., Stone, J., Bergink, V., Dolan, S.M., Howell, E.A., Janevic, T., Lieb, W., Ibroci, E., Lynch, J., Lieber, M., Molenaar, N.M., Rommel, A.S., Witte, L.D. de, Ohrn, S., Carreño, J.M., Krammer, F., Zapata, L.B., Snead, M.C., Brody, R.I., Jessel, R.H., Sestito, S., Adler, A., Afzal, O., Gigase, F., Missall, R., Carrión, D., Stone, J., Bergink, V., Dolan, S.M., and Howell, E.A.
- Abstract
Item does not contain fulltext, BACKGROUND: Structural racism and pandemic-related stress from the COVID-19 pandemic may increase the risk of adverse birth outcomes. OBJECTIVE: Our objective was to examine associations between neighborhood measures of structural racism and pandemic stress with 3 outcomes: SARS-CoV-2 infection, preterm birth, and delivering small-for-gestational-age newborns. Our secondary objective was to investigate the joint association of SARS-CoV-2 infection during pregnancy and neighborhood measures with preterm birth and delivering small-for-gestational-age newborns. STUDY DESIGN: We analyzed data of 967 patients from a prospective cohort of pregnant persons in New York City, comprising 367 White (38%), 169 Black (17%), 293 Latina (30%), and 87 Asian persons (9%), 41 persons of other race or ethnicity (4%), and 10 of unknown race or ethnicity (1%). We evaluated structural racism (social/built structural disadvantage, racial-economic segregation) and pandemic-related stress (community COVID-19 mortality, community unemployment rate increase) in quartiles by zone improvement plan code. SARS-CoV-2 serologic enzyme-linked immunosorbent assay was performed on blood samples from pregnant persons. We obtained data on preterm birth and small-for-gestational-age newborns from an electronic medical record database. We used log-binomial regression with robust standard error for clustering by zone improvement plan code to estimate associations of each neighborhood measure separately with 3 outcomes: SARS-CoV-2 infection, preterm birth, and small-for-gestational-age newborns. Covariates included maternal age, parity, insurance status, and body mass index. Models with preterm birth and small-for-gestational-age newborns as the dependent variables additionally adjusted for SARS-CoV-2 infection. RESULTS: A total of 193 (20%) persons were SARS-CoV-2-seropositive, and the overall risks of preterm birth and small-for-gestational-age newborns were 8.4% and 9.8%, respectively. Among birthing per
- Published
- 2022
10. PARIS and SPARTA: Finding the Achilles' Heel of SARS-CoV-2
- Author
-
Rasmussen, AL, Simon, V, Kota, V, Bloomquist, RF, Hanley, HB, Forgacs, D, Pahwa, S, Pallikkuth, S, Miller, LG, Schaenman, J, Yeaman, MR, Manthei, D, Wolf, J, Gaur, AH, Estepp, JH, Srivastava, K, Carreno, JM, Cuevas, F, Ellebedy, AH, Gordon, A, Valdez, R, Cobey, S, Reed, EF, Kolhe, R, Thomas, PG, Schultz-Cherry, S, Ross, TM, Krammer, F, Rasmussen, AL, Simon, V, Kota, V, Bloomquist, RF, Hanley, HB, Forgacs, D, Pahwa, S, Pallikkuth, S, Miller, LG, Schaenman, J, Yeaman, MR, Manthei, D, Wolf, J, Gaur, AH, Estepp, JH, Srivastava, K, Carreno, JM, Cuevas, F, Ellebedy, AH, Gordon, A, Valdez, R, Cobey, S, Reed, EF, Kolhe, R, Thomas, PG, Schultz-Cherry, S, Ross, TM, and Krammer, F
- Abstract
To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.
- Published
- 2022
11. Lung Cancer and Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Identifying Important Knowledge Gaps for Investigation
- Author
-
Rolfo C, Meshulami N, Russo A, Krammer F, García-Sastre A, Mack PC, Gomez JE, Bhardwaj N, Benyounes A, Sirera R, Moore A, Rohs N, Henschke CI, Yankelevitz D, King J, Shyr Y, Bunn PA, Minna JD, and Hirsch FR
- Subjects
COVID-19, Chemotherapy, Immunotherapy, Lung cancer, SARS-CoV-2, Vaccine - Abstract
Patients with lung cancer are especially vulnerable to coronavirus disease 2019 (COVID-19) with a greater than sevenfold higher rate of becoming infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19, a greater than threefold higher hospitalization rate with high complication rates, and an estimated case fatality rate of more than 30%. The reasons for the increased vulnerability are not known. In addition, beyond the direct impact of the pandemic on morbidity and mortality among patients with lung cancer, COVID-19, with its disruption of patient care, has also resulted in substantial impact on lung cancer screening and treatment/management.COVID-19 vaccines are safe and effective in people with lung cancer. On the basis of the available data, patients with lung cancer should continue their course of cancer treatment and get vaccinated against the SARS-CoV-2 virus. For unknown reasons, some patients with lung cancer mount poor antibody responses to vaccination. Thus, boosting vaccination seems urgently indicated in this subgroup of vulnerable patients with lung cancer. Nevertheless, many unanswered questions regarding vaccination in this population remain, including the magnitude, quality, and duration of antibody response and the role of innate and acquired cellular immunities for clinical protection. Additional important knowledge gaps also remain, including the following: how can we best protect patients with lung cancer from developing COVID-19, including managing care in patient with lung cancer and the home environment of patients with lung cancer; are there clinical/treatment demographics and tumor molecular demographics that affect severity of COVID-19 disease in patients with lung cancer; does anticancer treatment affect antibody production and protection; does SARS-CoV-2 infection affect the development/progression of lung cancer; and are special measures and vaccine strategies needed for patients with lung cancer as viral variants of concern emerge.
- Published
- 2022
12. OA01.01 Analysis of Lung Cancer Patients Receiving SARS-CoV-2 Vaccines Revealed a Minority Subset With Poor Antibody Responses Relative to Controls
- Author
-
Gomez, J., primary, Krammer, F., additional, Mack, P., additional, Rolfo, C., additional, Rohs, N., additional, Moore, A., additional, King, J., additional, Henschke, C., additional, Yankelevitz, D., additional, Shyr, Y., additional, Taioli, E., additional, Fontoura, B., additional, Brody, R., additional, Gerber, D., additional, Minna, J., additional, Bunn, P.A., additional, Garcia-Sastre, A., additional, and Hirsch, F., additional
- Published
- 2021
- Full Text
- View/download PDF
13. An Assessment of Serological Assays for SARS-CoV-2 as Surrogates for Authentic Virus Neutralization
- Author
-
Perez, DR, Wohlgemuth, N, Whitt, K, Cherry, S, Roubidoux, EK, Lin, C-Y, Allison, KJ, Gowen, A, Freiden, P, Allen, EK, Gaur, AH, Estepp, JH, Tang, L, Mori, T, Hijano, DR, Hakim, H, McGargill, MA, Krammer, F, Whitt, MA, Wolf, J, Thomas, PG, Schultz-Cherry, S, Perez, DR, Wohlgemuth, N, Whitt, K, Cherry, S, Roubidoux, EK, Lin, C-Y, Allison, KJ, Gowen, A, Freiden, P, Allen, EK, Gaur, AH, Estepp, JH, Tang, L, Mori, T, Hijano, DR, Hakim, H, McGargill, MA, Krammer, F, Whitt, MA, Wolf, J, Thomas, PG, and Schultz-Cherry, S
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and has since caused a global pandemic resulting in millions of cases and deaths. Diagnostic tools and serological assays are critical for controlling the outbreak, especially assays designed to quantitate neutralizing antibody levels, considered the best correlate of protection. As vaccines become increasingly available, it is important to identify reliable methods for measuring neutralizing antibody responses that correlate with authentic virus neutralization but can be performed outside biosafety level 3 (BSL3) laboratories. While many neutralizing assays using pseudotyped virus have been developed, there have been few studies comparing the different assays to each other as surrogates for authentic virus neutralization. Here, we characterized three enzyme-linked immunosorbent assays (ELISAs) and three pseudotyped vesicular stomatitis virus (VSV) neutralization assays and assessed their concordance with authentic virus neutralization. The most accurate assays for predicting authentic virus neutralization were luciferase- and secreted embryonic alkaline phosphatase (SEAP)-expressing pseudotyped virus neutralizations, followed by green fluorescent protein (GFP)-expressing pseudotyped virus neutralization, and then the ELISAs. IMPORTANCE The ongoing COVID-19 pandemic is caused by infection with severe acute respiratory syndrome virus 2 (SARS-CoV-2). Prior infection or vaccination can be detected by the presence of antibodies in the blood. Antibodies in the blood are also considered to be protective against future infections from the same virus. The "gold standard" assay for detecting protective antibodies against SARS-CoV-2 is neutralization of authentic SARS-CoV-2 virus. However, this assay can only be performed under highly restrictive biocontainment conditions. We therefore characterized six antibody-detecting assays for their correlation with authentic virus neutralization. The sign
- Published
- 2021
14. Integrated immune dynamics define correlates of COVID-19 severity and antibody responses
- Author
-
Koutsakos, M, Rowntree, LC, Hensen, L, Chua, BY, van de Sandt, CE, Habel, JR, Zhang, W, Jia, X, Kedzierski, L, Ashhurst, TM, Putri, GH, Marsh-Wakefield, F, Read, MN, Edwards, DN, Clemens, EB, Wong, CY, Mordant, FL, Juno, JA, Amanat, F, Audsley, J, Holmes, NE, Gordon, CL, Smibert, OC, Trubiano, JA, Hughes, CM, Catton, M, Denholm, JT, Tong, SYC, Doolan, DL, Kotsimbos, TC, Jackson, DC, Krammer, F, Godfrey, D, Chung, AW, King, NJC, Lewin, SR, Wheatley, AK, Kent, SJ, Subbarao, K, McMahon, J, Thevarajan, I, Thi, HON, Cheng, AC, Kedzierska, K, Koutsakos, M, Rowntree, LC, Hensen, L, Chua, BY, van de Sandt, CE, Habel, JR, Zhang, W, Jia, X, Kedzierski, L, Ashhurst, TM, Putri, GH, Marsh-Wakefield, F, Read, MN, Edwards, DN, Clemens, EB, Wong, CY, Mordant, FL, Juno, JA, Amanat, F, Audsley, J, Holmes, NE, Gordon, CL, Smibert, OC, Trubiano, JA, Hughes, CM, Catton, M, Denholm, JT, Tong, SYC, Doolan, DL, Kotsimbos, TC, Jackson, DC, Krammer, F, Godfrey, D, Chung, AW, King, NJC, Lewin, SR, Wheatley, AK, Kent, SJ, Subbarao, K, McMahon, J, Thevarajan, I, Thi, HON, Cheng, AC, and Kedzierska, K
- Abstract
SARS-CoV-2 causes a spectrum of COVID-19 disease, the immunological basis of which remains ill defined. We analyzed 85 SARS-CoV-2-infected individuals at acute and/or convalescent time points, up to 102 days after symptom onset, quantifying 184 immunological parameters. Acute COVID-19 presented with high levels of IL-6, IL-18, and IL-10 and broad activation marked by the upregulation of CD38 on innate and adaptive lymphocytes and myeloid cells. Importantly, activated CXCR3+cTFH1 cells in acute COVID-19 significantly correlate with and predict antibody levels and their avidity at convalescence as well as acute neutralization activity. Strikingly, intensive care unit (ICU) patients with severe COVID-19 display higher levels of soluble IL-6, IL-6R, and IL-18, and hyperactivation of innate, adaptive, and myeloid compartments than patients with moderate disease. Our analyses provide a comprehensive map of longitudinal immunological responses in COVID-19 patients and integrate key cellular pathways of complex immune networks underpinning severe COVID-19, providing important insights into potential biomarkers and immunotherapies.
- Published
- 2021
15. Robust correlations across six SARS-CoV-2 serology assays detecting distinct antibody features
- Author
-
Rowntree, LC, Chua, BY, Nicholson, S, Koutsakos, M, Hensen, L, Douros, C, Selva, K, Mordant, FL, Wong, CY, Habel, JR, Zhang, W, Jia, X, Allen, L, Doolan, DL, Jackson, DC, Wheatley, AK, Kent, SJ, Amanat, F, Krammer, F, Subbarao, K, Cheng, AC, Chung, AW, Catton, M, Nguyen, THO, van de Sandt, CE, Kedzierska, K, Rowntree, LC, Chua, BY, Nicholson, S, Koutsakos, M, Hensen, L, Douros, C, Selva, K, Mordant, FL, Wong, CY, Habel, JR, Zhang, W, Jia, X, Allen, L, Doolan, DL, Jackson, DC, Wheatley, AK, Kent, SJ, Amanat, F, Krammer, F, Subbarao, K, Cheng, AC, Chung, AW, Catton, M, Nguyen, THO, van de Sandt, CE, and Kedzierska, K
- Abstract
OBJECTIVES: As the world transitions into a new era of the COVID-19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination. METHODS: We used 34 SARS-CoV-2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level-3 containment. We correlated results from the sVNT with five additional commonly used SARS-CoV-2 serology techniques: the microneutralisation test (MNT), in-house ELISAs, commercial Euroimmun- and Wantai-based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen-binding avidity, and high-throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody-secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers. RESULTS: Antibody data obtained with commercial ELISAs closely reflected results using in-house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike-specific IgG and IgA titres detected by both commercial and in-house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh-type 1 cell numbers correlated with spike and RBD-specific IgG antibodies measured by ELISAs and sVNT. CONCLUSION: Our comprehensive analyses provide important insights into SARS-CoV-2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS-CoV-2-specific humoral responses.
- Published
- 2021
16. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
- Author
-
Zhang, Q., Liu, Z., Moncada-Velez, M., Chen, J., Ogishi, M., Bigio, B., Yang, R., Arias, A.A., Zhou, Q., Han, J.E., Ugurbil, A.C., Zhang, P., Rapaport, F., Li, J., Spaan, A.N., Boisson, B., Boisson-Dupuis, S., Bustamante, J., Puel, A., Ciancanelli, M.J., Zhang, S.Y., Béziat, V., Jouanguy, E., Abel, L., Cobat, A., Casanova, J.L., Bastard, P., Korol, C., Rosain, J., Philippot, Q., Chbihi, M., Lorenzo, L., Bizien, L., Neehus, A.L., Kerner, G., Seeleuthner, Y., Manry, J., Le Voyer, T., Le Pen, J., Schneider, W.M., Razooky, B.S., Hoffmann, H.H., Michailidis, E., Rice, C.M., Sabli, I.K.D., Hodeib, S., Sancho-Shimizu, V., Bilguvar, K., Ye, J., Maniatis, T., Bolze, A., Zhang, Y., Notarangelo, L.D., Su, H.C., Onodi, F., Korniotis, S., Karpf, L., Soumelis, V., Bonnet-Madin, L., Amara, A., Dorgham, Karim, Gorochov, G., Smith, N., Duffy, D., Moens, L., Meyts, I., Meade, P., Garcia-Sastre, Adolfo, Krammer, F., Corneau, A., Masson, C., Schmitt, Y., Schluter, A., Pujol, A., Khan, T., Marr, N., Fellay, Jacques, Roussel, L., Vinh, D.C., Shahrooei, M., Alosaimi, M.F., Alsohime, F., Hasanato, R., Mansouri, D., Al-Saud, H., Almourfi, F., Al-Mulla, F., Al-Muhsen, S.Z., Al Turki, S., van de Beek, D., Biondi, A., Bettini, L.R., D'Angio, M., Bonfanti, P., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Oler, A.J., Tompkins, M.F., Alba, C., Dalgard, C.L., Vandernoot, I., Smits, G., Goffard, J.C., Migeotte, I., Haerynck, F., Soler-Palacín, P., Martin-Nalda, A., Colobrán Oriol, Roger, Morange, P.E., Keles, S., Çölkesen, F., Ozcelik, T., Yasar, K.K., Senoglu, S., Karabela, Ş.N., Rodríguez-Gallego, C., Novelli, G., Hraiech, S., Tandjaoui-Lambiotte, Y., Duval, X., Laouénan, C., Snow, A., Milner, J.D., Mogensen, T.H., Nussenzweig, M., Lifton, R.P., Foti, Giuseppe, Bellani, G., Citerio, G., Contro, E., Pesci, A., Valsecchi, M.G., Cazzaniga, M., Abad Capa, Jorge, Blanco, I., Rodrigo, C., Aguilera-Albesa, S., Akcan, O.M., Darazam, I.A., Aldave, J.C., Ramos, M.A., Nadji, S.A., Alkan, G., Allardet-Servent, J., Allende, L.M., Alsina, L., Alyanakian, M.A., Amador-Borrero, B., Mouly, S., Sene, D., Amoura, Z., Mathian, A., Antolí, A., Blanch, G.R., Riera, J.S., Moreno, X.S., Arslan, S., Assant, S., Auguet, T., Azot, A., Bajolle, F., Lévy, R., Oualha, M., Baldolli, A., Ballester, M., Feldman, H.B., Barrou, B., Beurton, A., Bilbao, A., Blanchard-Rohner, G., Blandinières, A., Rivet, N., Blazquez-Gamero, D., Bloomfield, M., Bolivar-Prados, Mireia, Clavé, P., Bosteels, C., Lambrecht, B.N., van Braeckel, E., Bousfiha, A.A., Bouvattier, C., Vincent, A., Boyarchuk, O., Bueno, M.R.P., Castro, M.V., Matos, L.R.B., Zatz, M., Agra, J.J.C., Calimli, S., Capra, R., Carrabba, M., Fabio, G., Casasnovas, Carlos, Vélez-Santamaria, V., Caseris, M., Falck, A., Poncelet, G., Castelle, M., Castelli, F., de Vera, M.C., Catherinot, E., Chalumeau, M., Toubiana, J., Charbit, B., Li, Z., Pellegrini, S., Cheng, M.P., Clotet, B., Codina, A., Colkesen, F., Comarmond, C., Dalmau, D., Darley, D.R., Dauby, N., Dauger, S., Le Bourgeois, F., Levy, M., de Pontual, L., Dehban, A., Delplancq, G., Demoule, A., Diehl, J.L., Dobbelaere, S., Durand, S., Mircher, C., Rebillat, A.S., Vilaire, M.E., Eldars, W., Elgamal, M., Elnagdy, M.H., Emiroglu, M., Erdeniz, E.H., Aytekin, S.E., Euvrard, R., Evcen, R., Faivre, L., Fartoukh, M., Faure, M., Arquero, M.F., Flores, Carlos, Francois, B., Fumadó, V., Fusco, F., Ursini, M.V., Solis, B.G., de Diego, R.P., van Den Rym, A.M., Gaussem, P., Gil-Herrera, J., Gilardin, L., Alarcon, M.G., Girona-Alarcón, M., Gok, F., Yosunkaya, A., Thy, M., van Agtmael, M., Bomers, M., Chouchane, O., Geerlings, S., Goorhuis, B., Grobusch, M.P., Harris, V., Hermans, S.M., Hovius, J.W., Nellen, J., Peters, E., van der Poll, T., Prins, J.M., Reijnders, T., Schinkel, M., Sigaloff, K., Stijnis, C.S., van der Valk, M., van Vugt, M., Joost Wiersinga, W., Algera, A.G., van Baarle, F., Bos, Lieuwe D, Botta, M., de Bruin, S., Bulle, E., Elbers, P., Fleuren, L., Girbes, A., Hagens, L., Heunks, L., Horn, J., van Mourik, N., Paulus, F., Raasveld, J., Schultz, M.J., Smit, M., Stilma, Willemke, Thoral, P., Tsonas, A., de Vries, H., Bax, D., Cloherty, A., Beudel, M., Brouwer, M.C., Koning, R., Bogaard, H.J., de Brabander, J., de Bree, G., Bugiani, M., Geerts, B., Hollmann, M.W., Preckel, B., Veelo, D., Geijtenbeek, T., Hafkamp, F., Hamann, J., Hemke, R., de Jong, M.D., Schuurman, A., Teunissen, C., Vlaar, A.P.J., Wouters, D., Zwinderman, A.H., Aiuti, A., Muhsen, S.A., Anderson, M.S., Bogunovic, D., Itan, Y., Cirulli, E., Barrett, K.S., Washington, N., Bondarenko, A., Brodin, P., Bryceson, Y., Bustamante, C.D., Butte, M., Casari, G., Chakravorty, S., Christodoulou, J., Le Mestre, S., Condino-Neto, A., Cooper, M.A., David, A., DeRisi, J.L., Desai, M., Drolet, B.A., Espinosa, S., Franco, J.L., Gregersen, P.K., Hagin, D., Halwani, R., Heath, J., Henrickson, S.E., Hsieh, E., Imai, K., Karamitros, T., Kisand, K., Ku, C.L., Lau, Y.L., Ling, Y., Lucas, C.L., Marodi, L., Milner, J., Mironska, K., Morio, T., Novelli, A., O'Farrelly, C., Okada, S., Planas, A.M., Prando, C., Quintana-Murci, L., Renia, L., Renieri, A., Sankaran, V., Tangye, S., Turvey, S., Uddin, F., Uddin, M.J., Vazquez, S.E., von Bernuth, H., Zawadzki, P., Jing, H., Tung, W., Meguro, K., Shaw, E., Shafer, S., Zheng, L., Zhang, Z., Kubo, S., Chauvin, S.D., Lenardo, M., Luthers, C.R., Bauman, B.M., Lack, J., Karlins, E., Hupalo, D.M., Rosenberger, J., Sukumar, G., Wilkerson, M.D., Zhang, X., Universitat Autònoma Barcelona, Zhang, Q., Liu, Z., Moncada-Velez, M., Chen, J., Ogishi, M., Bigio, B., Yang, R., Arias, A.A., Zhou, Q., Han, J.E., Ugurbil, A.C., Zhang, P., Rapaport, F., Li, J., Spaan, A.N., Boisson, B., Boisson-Dupuis, S., Bustamante, J., Puel, A., Ciancanelli, M.J., Zhang, S.Y., Béziat, V., Jouanguy, E., Abel, L., Cobat, A., Casanova, J.L., Bastard, P., Korol, C., Rosain, J., Philippot, Q., Chbihi, M., Lorenzo, L., Bizien, L., Neehus, A.L., Kerner, G., Seeleuthner, Y., Manry, J., Le Voyer, T., Le Pen, J., Schneider, W.M., Razooky, B.S., Hoffmann, H.H., Michailidis, E., Rice, C.M., Sabli, I.K.D., Hodeib, S., Sancho-Shimizu, V., Bilguvar, K., Ye, J., Maniatis, T., Bolze, A., Zhang, Y., Notarangelo, L.D., Su, H.C., Onodi, F., Korniotis, S., Karpf, L., Soumelis, V., Bonnet-Madin, L., Amara, A., Dorgham, Karim, Gorochov, G., Smith, N., Duffy, D., Moens, L., Meyts, I., Meade, P., Garcia-Sastre, Adolfo, Krammer, F., Corneau, A., Masson, C., Schmitt, Y., Schluter, A., Pujol, A., Khan, T., Marr, N., Fellay, Jacques, Roussel, L., Vinh, D.C., Shahrooei, M., Alosaimi, M.F., Alsohime, F., Hasanato, R., Mansouri, D., Al-Saud, H., Almourfi, F., Al-Mulla, F., Al-Muhsen, S.Z., Al Turki, S., van de Beek, D., Biondi, A., Bettini, L.R., D'Angio, M., Bonfanti, P., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Oler, A.J., Tompkins, M.F., Alba, C., Dalgard, C.L., Vandernoot, I., Smits, G., Goffard, J.C., Migeotte, I., Haerynck, F., Soler-Palacín, P., Martin-Nalda, A., Colobrán Oriol, Roger, Morange, P.E., Keles, S., Çölkesen, F., Ozcelik, T., Yasar, K.K., Senoglu, S., Karabela, Ş.N., Rodríguez-Gallego, C., Novelli, G., Hraiech, S., Tandjaoui-Lambiotte, Y., Duval, X., Laouénan, C., Snow, A., Milner, J.D., Mogensen, T.H., Nussenzweig, M., Lifton, R.P., Foti, Giuseppe, Bellani, G., Citerio, G., Contro, E., Pesci, A., Valsecchi, M.G., Cazzaniga, M., Abad Capa, Jorge, Blanco, I., Rodrigo, C., Aguilera-Albesa, S., Akcan, O.M., Darazam, I.A., Aldave, J.C., Ramos, M.A., Nadji, S.A., Alkan, G., Allardet-Servent, J., Allende, L.M., Alsina, L., Alyanakian, M.A., Amador-Borrero, B., Mouly, S., Sene, D., Amoura, Z., Mathian, A., Antolí, A., Blanch, G.R., Riera, J.S., Moreno, X.S., Arslan, S., Assant, S., Auguet, T., Azot, A., Bajolle, F., Lévy, R., Oualha, M., Baldolli, A., Ballester, M., Feldman, H.B., Barrou, B., Beurton, A., Bilbao, A., Blanchard-Rohner, G., Blandinières, A., Rivet, N., Blazquez-Gamero, D., Bloomfield, M., Bolivar-Prados, Mireia, Clavé, P., Bosteels, C., Lambrecht, B.N., van Braeckel, E., Bousfiha, A.A., Bouvattier, C., Vincent, A., Boyarchuk, O., Bueno, M.R.P., Castro, M.V., Matos, L.R.B., Zatz, M., Agra, J.J.C., Calimli, S., Capra, R., Carrabba, M., Fabio, G., Casasnovas, Carlos, Vélez-Santamaria, V., Caseris, M., Falck, A., Poncelet, G., Castelle, M., Castelli, F., de Vera, M.C., Catherinot, E., Chalumeau, M., Toubiana, J., Charbit, B., Li, Z., Pellegrini, S., Cheng, M.P., Clotet, B., Codina, A., Colkesen, F., Comarmond, C., Dalmau, D., Darley, D.R., Dauby, N., Dauger, S., Le Bourgeois, F., Levy, M., de Pontual, L., Dehban, A., Delplancq, G., Demoule, A., Diehl, J.L., Dobbelaere, S., Durand, S., Mircher, C., Rebillat, A.S., Vilaire, M.E., Eldars, W., Elgamal, M., Elnagdy, M.H., Emiroglu, M., Erdeniz, E.H., Aytekin, S.E., Euvrard, R., Evcen, R., Faivre, L., Fartoukh, M., Faure, M., Arquero, M.F., Flores, Carlos, Francois, B., Fumadó, V., Fusco, F., Ursini, M.V., Solis, B.G., de Diego, R.P., van Den Rym, A.M., Gaussem, P., Gil-Herrera, J., Gilardin, L., Alarcon, M.G., Girona-Alarcón, M., Gok, F., Yosunkaya, A., Thy, M., van Agtmael, M., Bomers, M., Chouchane, O., Geerlings, S., Goorhuis, B., Grobusch, M.P., Harris, V., Hermans, S.M., Hovius, J.W., Nellen, J., Peters, E., van der Poll, T., Prins, J.M., Reijnders, T., Schinkel, M., Sigaloff, K., Stijnis, C.S., van der Valk, M., van Vugt, M., Joost Wiersinga, W., Algera, A.G., van Baarle, F., Bos, Lieuwe D, Botta, M., de Bruin, S., Bulle, E., Elbers, P., Fleuren, L., Girbes, A., Hagens, L., Heunks, L., Horn, J., van Mourik, N., Paulus, F., Raasveld, J., Schultz, M.J., Smit, M., Stilma, Willemke, Thoral, P., Tsonas, A., de Vries, H., Bax, D., Cloherty, A., Beudel, M., Brouwer, M.C., Koning, R., Bogaard, H.J., de Brabander, J., de Bree, G., Bugiani, M., Geerts, B., Hollmann, M.W., Preckel, B., Veelo, D., Geijtenbeek, T., Hafkamp, F., Hamann, J., Hemke, R., de Jong, M.D., Schuurman, A., Teunissen, C., Vlaar, A.P.J., Wouters, D., Zwinderman, A.H., Aiuti, A., Muhsen, S.A., Anderson, M.S., Bogunovic, D., Itan, Y., Cirulli, E., Barrett, K.S., Washington, N., Bondarenko, A., Brodin, P., Bryceson, Y., Bustamante, C.D., Butte, M., Casari, G., Chakravorty, S., Christodoulou, J., Le Mestre, S., Condino-Neto, A., Cooper, M.A., David, A., DeRisi, J.L., Desai, M., Drolet, B.A., Espinosa, S., Franco, J.L., Gregersen, P.K., Hagin, D., Halwani, R., Heath, J., Henrickson, S.E., Hsieh, E., Imai, K., Karamitros, T., Kisand, K., Ku, C.L., Lau, Y.L., Ling, Y., Lucas, C.L., Marodi, L., Milner, J., Mironska, K., Morio, T., Novelli, A., O'Farrelly, C., Okada, S., Planas, A.M., Prando, C., Quintana-Murci, L., Renia, L., Renieri, A., Sankaran, V., Tangye, S., Turvey, S., Uddin, F., Uddin, M.J., Vazquez, S.E., von Bernuth, H., Zawadzki, P., Jing, H., Tung, W., Meguro, K., Shaw, E., Shafer, S., Zheng, L., Zhang, Z., Kubo, S., Chauvin, S.D., Lenardo, M., Luthers, C.R., Bauman, B.M., Lack, J., Karlins, E., Hupalo, D.M., Rosenberger, J., Sukumar, G., Wilkerson, M.D., Zhang, X., and Universitat Autònoma Barcelona
- Abstract
Afegiu 653 1_, Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
- Published
- 2020
17. Development and Assessment of a Pooled Serum as Candidate Standard to Measure Influenza A Virus Group 1 Hemagglutinin Stalk-Reactive Antibodies.
- Author
-
Carreño, JM, McDonald, JU, Hurst, T, Rigsby, P, Atkinson, E, Charles, L, Nachbagauer, R, Behzadi, MA, Strohmeier, S, Coughlan, L, Aydillo, T, Brandenburg, B, García-Sastre, A, Kaszas, K, Levine, MZ, Manenti, A, McDermott, AB, Montomoli, E, Muchene, L, Narpala, SR, Perera, RAPM, Salisch, NC, Valkenburg, SA, Zhou, F, Engelhardt, OG, Krammer, F, Carreño, JM, McDonald, JU, Hurst, T, Rigsby, P, Atkinson, E, Charles, L, Nachbagauer, R, Behzadi, MA, Strohmeier, S, Coughlan, L, Aydillo, T, Brandenburg, B, García-Sastre, A, Kaszas, K, Levine, MZ, Manenti, A, McDermott, AB, Montomoli, E, Muchene, L, Narpala, SR, Perera, RAPM, Salisch, NC, Valkenburg, SA, Zhou, F, Engelhardt, OG, and Krammer, F
- Abstract
The stalk domain of the hemagglutinin has been identified as a target for induction of protective antibody responses due to its high degree of conservation among numerous influenza subtypes and strains. However, current assays to measure stalk-based immunity are not standardized. Hence, harmonization of assay readouts would help to compare experiments conducted in different laboratories and increase confidence in results. Here, serum samples from healthy individuals (n = 110) were screened using a chimeric cH6/1 hemagglutinin enzyme-linked immunosorbent assay (ELISA) that measures stalk-reactive antibodies. We identified samples with moderate to high IgG anti-stalk antibody levels. Likewise, screening of the samples using the mini-hemagglutinin (HA) headless construct #4900 and analysis of the correlation between the two assays confirmed the presence and specificity of anti-stalk antibodies. Additionally, samples were characterized by a cH6/1N5 virus-based neutralization assay, an antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and competition ELISAs, using the stalk-reactive monoclonal antibodies KB2 (mouse) and CR9114 (human). A "pooled serum" (PS) consisting of a mixture of selected serum samples was generated. The PS exhibited high levels of stalk-reactive antibodies, had a cH6/1N5-based neutralization titer of 320, and contained high levels of stalk-specific antibodies with ADCC activity. The PS, along with blinded samples of varying anti-stalk antibody titers, was distributed to multiple collaborators worldwide in a pilot collaborative study. The samples were subjected to different assays available in the different laboratories, to measure either binding or functional properties of the stalk-reactive antibodies contained in the serum. Results from binding and neutralization assays were analyzed to determine whether use of the PS as a standard could lead to better agreement between laboratories. The work presented here points the way towards the dev
- Published
- 2020
18. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
- Author
-
Zhang, Q, Bastard, P, Liu, Z, Le Pen, J, Moncada-Velez, M, Chen, J, Ogishi, M, Sabli, I, Hodeib, S, Korol, C, Rosain, J, Bilguvar, K, Ye, J, Bolze, A, Bigio, B, Yang, R, Arias, A, Zhou, Q, Zhang, Y, Onodi, F, Korniotis, S, Karpf, L, Philippot, Q, Chbihi, M, Bonnet-Madin, L, Dorgham, K, Smith, N, Schneider, W, Razooky, B, Hoffmann, H, Michailidis, E, Moens, L, Han, J, Lorenzo, L, Bizien, L, Meade, P, Neehus, A, Ugurbil, A, Corneau, A, Kerner, G, Zhang, P, Rapaport, F, Seeleuthner, Y, Manry, J, Masson, C, Schmitt, Y, Schlüter, A, Le Voyer, T, Khan, T, Li, J, Fellay, J, Roussel, L, Shahrooei, M, Alosaimi, M, Mansouri, D, Al-Saud, H, Al-Mulla, F, Almourfi, F, Al-Muhsen, S, Alsohime, F, Al Turki, S, Hasanato, R, van de Beek, D, Biondi, A, Bettini, L, D'Angio, M, Bonfanti, P, Imberti, L, Sottini, A, Paghera, S, Quiros-Roldan, E, Rossi, C, Oler, A, Tompkins, M, Alba, C, Vandernoot, I, Goffard, J, Smits, G, Migeotte, I, Haerynck, F, Soler-Palacin, P, Martin-Nalda, A, Colobran, R, Morange, P, Keles, S, Çölkesen, F, Ozcelik, T, Yasar, K, Senoglu, S, Karabela, Ş, Gallego, C, Novelli, G, Hraiech, S, Tandjaoui-Lambiotte, Y, Duval, X, Laouénan, C, Snow, A, Dalgard, C, Milner, J, Vinh, D, Mogensen, T, Marr, N, Spaan, A, Boisson, B, Boisson-Dupuis, S, Bustamante, J, Puel, A, Ciancanelli, M, Meyts, I, Maniatis, T, Soumelis, V, Amara, A, Nussenzweig, M, García-Sastre, A, Krammer, F, Pujol, A, Duffy, D, Lifton, R, Zhang, S, Gorochov, G, Béziat, V, Jouanguy, E, Sancho-Shimizu, V, Rice, C, Abel, L, Notarangelo, L, Cobat, A, Su, H, Casanova, J, Pesci, A, Zhang, Qian, Bastard, Paul, Liu, Zhiyong, Le Pen, Jérémie, Moncada-Velez, Marcela, Chen, Jie, Ogishi, Masato, Sabli, Ira K D, Hodeib, Stephanie, Korol, Cecilia, Rosain, Jérémie, Bilguvar, Kaya, Ye, Junqiang, Bolze, Alexandre, Bigio, Benedetta, Yang, Rui, Arias, Andrés Augusto, Zhou, Qinhua, Zhang, Yu, Onodi, Fanny, Korniotis, Sarantis, Karpf, Léa, Philippot, Quentin, Chbihi, Marwa, Bonnet-Madin, Lucie, Dorgham, Karim, Smith, Nikaïa, Schneider, William M, Razooky, Brandon S, Hoffmann, Hans-Heinrich, Michailidis, Eleftherios, Moens, Leen, Han, Ji Eun, Lorenzo, Lazaro, Bizien, Lucy, Meade, Philip, Neehus, Anna-Lena, Ugurbil, Aileen Camille, Corneau, Aurélien, Kerner, Gaspard, Zhang, Peng, Rapaport, Franck, Seeleuthner, Yoann, Manry, Jeremy, Masson, Cecile, Schmitt, Yohann, Schlüter, Agatha, Le Voyer, Tom, Khan, Taushif, Li, Juan, Fellay, Jacques, Roussel, Lucie, Shahrooei, Mohammad, Alosaimi, Mohammed F, Mansouri, Davood, Al-Saud, Haya, Al-Mulla, Fahd, Almourfi, Feras, Al-Muhsen, Saleh Zaid, Alsohime, Fahad, Al Turki, Saeed, Hasanato, Rana, van de Beek, Diederik, Biondi, Andrea, Bettini, Laura Rachele, D'Angio, Mariella, Bonfanti, Paolo, Imberti, Luisa, Sottini, Alessandra, Paghera, Simone, Quiros-Roldan, Eugenia, Rossi, Camillo, Oler, Andrew J, Tompkins, Miranda F, Alba, Camille, Vandernoot, Isabelle, Goffard, Jean-Christophe, Smits, Guillaume, Migeotte, Isabelle, Haerynck, Filomeen, Soler-Palacin, Pere, Martin-Nalda, Andrea, Colobran, Roger, Morange, Pierre-Emmanuel, Keles, Sevgi, Çölkesen, Fatma, Ozcelik, Tayfun, Yasar, Kadriye Kart, Senoglu, Sevtap, Karabela, Şemsi Nur, Gallego, Carlos Rodríguez, Novelli, Giuseppe, Hraiech, Sami, Tandjaoui-Lambiotte, Yacine, Duval, Xavier, Laouénan, Cédric, Snow, Andrew L, Dalgard, Clifton L, Milner, Joshua, Vinh, Donald C, Mogensen, Trine H, Marr, Nico, Spaan, András N, Boisson, Bertrand, Boisson-Dupuis, Stéphanie, Bustamante, Jacinta, Puel, Anne, Ciancanelli, Michael, Meyts, Isabelle, Maniatis, Tom, Soumelis, Vassili, Amara, Ali, Nussenzweig, Michel, García-Sastre, Adolfo, Krammer, Florian, Pujol, Aurora, Duffy, Darragh, Lifton, Richard, Zhang, Shen-Ying, Gorochov, Guy, Béziat, Vivien, Jouanguy, Emmanuelle, Sancho-Shimizu, Vanessa, Rice, Charles M, Abel, Laurent, Notarangelo, Luigi D, Cobat, Aurélie, Su, Helen C, Casanova, Jean-Laurent, Pesci, Alberto, Zhang, Q, Bastard, P, Liu, Z, Le Pen, J, Moncada-Velez, M, Chen, J, Ogishi, M, Sabli, I, Hodeib, S, Korol, C, Rosain, J, Bilguvar, K, Ye, J, Bolze, A, Bigio, B, Yang, R, Arias, A, Zhou, Q, Zhang, Y, Onodi, F, Korniotis, S, Karpf, L, Philippot, Q, Chbihi, M, Bonnet-Madin, L, Dorgham, K, Smith, N, Schneider, W, Razooky, B, Hoffmann, H, Michailidis, E, Moens, L, Han, J, Lorenzo, L, Bizien, L, Meade, P, Neehus, A, Ugurbil, A, Corneau, A, Kerner, G, Zhang, P, Rapaport, F, Seeleuthner, Y, Manry, J, Masson, C, Schmitt, Y, Schlüter, A, Le Voyer, T, Khan, T, Li, J, Fellay, J, Roussel, L, Shahrooei, M, Alosaimi, M, Mansouri, D, Al-Saud, H, Al-Mulla, F, Almourfi, F, Al-Muhsen, S, Alsohime, F, Al Turki, S, Hasanato, R, van de Beek, D, Biondi, A, Bettini, L, D'Angio, M, Bonfanti, P, Imberti, L, Sottini, A, Paghera, S, Quiros-Roldan, E, Rossi, C, Oler, A, Tompkins, M, Alba, C, Vandernoot, I, Goffard, J, Smits, G, Migeotte, I, Haerynck, F, Soler-Palacin, P, Martin-Nalda, A, Colobran, R, Morange, P, Keles, S, Çölkesen, F, Ozcelik, T, Yasar, K, Senoglu, S, Karabela, Ş, Gallego, C, Novelli, G, Hraiech, S, Tandjaoui-Lambiotte, Y, Duval, X, Laouénan, C, Snow, A, Dalgard, C, Milner, J, Vinh, D, Mogensen, T, Marr, N, Spaan, A, Boisson, B, Boisson-Dupuis, S, Bustamante, J, Puel, A, Ciancanelli, M, Meyts, I, Maniatis, T, Soumelis, V, Amara, A, Nussenzweig, M, García-Sastre, A, Krammer, F, Pujol, A, Duffy, D, Lifton, R, Zhang, S, Gorochov, G, Béziat, V, Jouanguy, E, Sancho-Shimizu, V, Rice, C, Abel, L, Notarangelo, L, Cobat, A, Su, H, Casanova, J, Pesci, A, Zhang, Qian, Bastard, Paul, Liu, Zhiyong, Le Pen, Jérémie, Moncada-Velez, Marcela, Chen, Jie, Ogishi, Masato, Sabli, Ira K D, Hodeib, Stephanie, Korol, Cecilia, Rosain, Jérémie, Bilguvar, Kaya, Ye, Junqiang, Bolze, Alexandre, Bigio, Benedetta, Yang, Rui, Arias, Andrés Augusto, Zhou, Qinhua, Zhang, Yu, Onodi, Fanny, Korniotis, Sarantis, Karpf, Léa, Philippot, Quentin, Chbihi, Marwa, Bonnet-Madin, Lucie, Dorgham, Karim, Smith, Nikaïa, Schneider, William M, Razooky, Brandon S, Hoffmann, Hans-Heinrich, Michailidis, Eleftherios, Moens, Leen, Han, Ji Eun, Lorenzo, Lazaro, Bizien, Lucy, Meade, Philip, Neehus, Anna-Lena, Ugurbil, Aileen Camille, Corneau, Aurélien, Kerner, Gaspard, Zhang, Peng, Rapaport, Franck, Seeleuthner, Yoann, Manry, Jeremy, Masson, Cecile, Schmitt, Yohann, Schlüter, Agatha, Le Voyer, Tom, Khan, Taushif, Li, Juan, Fellay, Jacques, Roussel, Lucie, Shahrooei, Mohammad, Alosaimi, Mohammed F, Mansouri, Davood, Al-Saud, Haya, Al-Mulla, Fahd, Almourfi, Feras, Al-Muhsen, Saleh Zaid, Alsohime, Fahad, Al Turki, Saeed, Hasanato, Rana, van de Beek, Diederik, Biondi, Andrea, Bettini, Laura Rachele, D'Angio, Mariella, Bonfanti, Paolo, Imberti, Luisa, Sottini, Alessandra, Paghera, Simone, Quiros-Roldan, Eugenia, Rossi, Camillo, Oler, Andrew J, Tompkins, Miranda F, Alba, Camille, Vandernoot, Isabelle, Goffard, Jean-Christophe, Smits, Guillaume, Migeotte, Isabelle, Haerynck, Filomeen, Soler-Palacin, Pere, Martin-Nalda, Andrea, Colobran, Roger, Morange, Pierre-Emmanuel, Keles, Sevgi, Çölkesen, Fatma, Ozcelik, Tayfun, Yasar, Kadriye Kart, Senoglu, Sevtap, Karabela, Şemsi Nur, Gallego, Carlos Rodríguez, Novelli, Giuseppe, Hraiech, Sami, Tandjaoui-Lambiotte, Yacine, Duval, Xavier, Laouénan, Cédric, Snow, Andrew L, Dalgard, Clifton L, Milner, Joshua, Vinh, Donald C, Mogensen, Trine H, Marr, Nico, Spaan, András N, Boisson, Bertrand, Boisson-Dupuis, Stéphanie, Bustamante, Jacinta, Puel, Anne, Ciancanelli, Michael, Meyts, Isabelle, Maniatis, Tom, Soumelis, Vassili, Amara, Ali, Nussenzweig, Michel, García-Sastre, Adolfo, Krammer, Florian, Pujol, Aurora, Duffy, Darragh, Lifton, Richard, Zhang, Shen-Ying, Gorochov, Guy, Béziat, Vivien, Jouanguy, Emmanuelle, Sancho-Shimizu, Vanessa, Rice, Charles M, Abel, Laurent, Notarangelo, Luigi D, Cobat, Aurélie, Su, Helen C, Casanova, Jean-Laurent, and Pesci, Alberto
- Abstract
Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
- Published
- 2020
19. Analysis of the vaccine-induced influenza B virus hemagglutinin-specific antibody dependent cellular cytotoxicity response
- Author
-
de Vries, Rory, Nieuwkoop, Nella, Krammer, F, Hu, B, Rimmelzwaan, Guus, de Vries, Rory, Nieuwkoop, Nella, Krammer, F, Hu, B, and Rimmelzwaan, Guus
- Published
- 2020
20. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
- Author
-
Universitat Rovira i Virgili, Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, Rosain J, Bilguvar K, Ye J, Bolze A, Bigio B, Yang R, Arias AA, Zhou Q, Zhang Y, Onodi F, Korniotis S, Karpf L, Philippot Q, Chbihi M, Bonnet-Madin L, Dorgham K, Smith N, Schneider WM, Razooky BS, Hoffmann HH, Michailidis E, Moens L, Han JE, Lorenzo L, Bizien L, Meade P, Neehus AL, Ugurbil AC, Corneau A, Kerner G, Zhang P, Rapaport F, Seeleuthner Y, Manry J, Masson C, Schmitt Y, Schlüter A, Le Voyer T, Khan T, Li J, Fellay J, Roussel L, Shahrooei M, Alosaimi MF, Mansouri D, Al-Saud H, Al-Mulla F, Almourfi F, Al-Muhsen SZ, Alsohime F, Al Turki S, Hasanato R, van de Beek D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Oler AJ, Tompkins MF, Alba C, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Soler-Palacin P, Martin-Nalda A, Colobran R, Morange PE, Keles S, Çölkesen F, Ozcelik T, Yasar KK, Senoglu S, Karabela ?N, Gallego CR, Novelli G, Hraiech S, Tandjaoui-Lambiotte Y, Duval X, Laouénan C,, Snow AL, Dalgard CL, Milner J, Vinh DC, Mogensen TH, Marr N, Spaan AN, Boisson B, Boisson-Dupuis S, Bustamante J, Puel A, Ciancanelli M, Meyts I, Maniatis T, Soumelis V, Amara A, Nussenzweig M, García-Sastre A, Krammer F, Pujol A, Duffy D, Lifton R, Zhang SY, Gorochov G, Béziat V, Jouanguy E, Sancho-Shimizu V, Rice CM, Abel L, Notarangelo LD, Cobat A, Su HC, Casanova JL COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-19, Biobank, COVID Human Genetic Effort, NIAID-USUHS, TAGC COVID Immunity Group, Universitat Rovira i Virgili, and Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, Rosain J, Bilguvar K, Ye J, Bolze A, Bigio B, Yang R, Arias AA, Zhou Q, Zhang Y, Onodi F, Korniotis S, Karpf L, Philippot Q, Chbihi M, Bonnet-Madin L, Dorgham K, Smith N, Schneider WM, Razooky BS, Hoffmann HH, Michailidis E, Moens L, Han JE, Lorenzo L, Bizien L, Meade P, Neehus AL, Ugurbil AC, Corneau A, Kerner G, Zhang P, Rapaport F, Seeleuthner Y, Manry J, Masson C, Schmitt Y, Schlüter A, Le Voyer T, Khan T, Li J, Fellay J, Roussel L, Shahrooei M, Alosaimi MF, Mansouri D, Al-Saud H, Al-Mulla F, Almourfi F, Al-Muhsen SZ, Alsohime F, Al Turki S, Hasanato R, van de Beek D, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Oler AJ, Tompkins MF, Alba C, Vandernoot I, Goffard JC, Smits G, Migeotte I, Haerynck F, Soler-Palacin P, Martin-Nalda A, Colobran R, Morange PE, Keles S, Çölkesen F, Ozcelik T, Yasar KK, Senoglu S, Karabela ?N, Gallego CR, Novelli G, Hraiech S, Tandjaoui-Lambiotte Y, Duval X, Laouénan C,, Snow AL, Dalgard CL, Milner J, Vinh DC, Mogensen TH, Marr N, Spaan AN, Boisson B, Boisson-Dupuis S, Bustamante J, Puel A, Ciancanelli M, Meyts I, Maniatis T, Soumelis V, Amara A, Nussenzweig M, García-Sastre A, Krammer F, Pujol A, Duffy D, Lifton R, Zhang SY, Gorochov G, Béziat V, Jouanguy E, Sancho-Shimizu V, Rice CM, Abel L, Notarangelo LD, Cobat A, Su HC, Casanova JL COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-19, Biobank, COVID Human Genetic Effort, NIAID-USUHS, TAGC COVID Immunity Group
- Abstract
Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.Copyright © 2020, American Association for the Advancement of Science.
- Published
- 2020
21. A universal influenza virus vaccine strategy targeting the conserved stalk domain of the hemagglutinin
- Author
-
Krammer, F., primary
- Published
- 2018
- Full Text
- View/download PDF
22. Primary human influenza B virus infection induces cross-lineage hemagglutinin stalk-specifc antibodies mediating antibody-dependent cellular cytoxicity
- Author
-
Vries, R.D. (Rory) de, Nieuwkoop, N.J. (Nella), Klis, F.R.M. (Fiona) van der, Koopmans D.V.M., M.P.G. (Marion), Krammer, F. (Florian), Rimmelzwaan, G.F. (Guus), Vries, R.D. (Rory) de, Nieuwkoop, N.J. (Nella), Klis, F.R.M. (Fiona) van der, Koopmans D.V.M., M.P.G. (Marion), Krammer, F. (Florian), and Rimmelzwaan, G.F. (Guus)
- Abstract
Influenza A virus (IAV) and influenza B virus (IBV) cause substantial morbidity and mortality during annual epidemics. Two distinct lineages of IBV are distinguished, based on variation in hemagglutinin (HA): B/Victoria/2/87-like (B/Vic) and B/Yamagata/16/88-like (B/Yam). Here, we show that, in humans, primary IBV infection with either lineage induces HA-specifc antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. IBV infection induced antibodies specifc to the HA head and stalk, but only HA stalk-specifc antibodies mediated ADCC efciently and displayed cross-reactivity with IBV of both lineages. This corresponds to recent fndings that 2 points of contact between the eflector and target cell (ie, HA and sialic acid, respectively, and the fragment crystallizable [Fc] domain and Fcfl receptor IIIa, respectively) are required for efcient ADCC activity and that antibodies specifc for the receptor-binding site located in the head domain of HA therefore fail to mediate ADCC. Potentially, ADCC-mediating antibodies directed to the HA stalk of IBV contribute to cross-protective immunity to IBV of both lineages.
- Published
- 2018
- Full Text
- View/download PDF
23. Influenza
- Author
-
Krammer, F, Smith, GJD, Fouchier, RAM, Peiris, M, Kedzierska, K, Doherty, PC, Palese, P, Shaw, ML, Treanor, J, Webster, RG, Garcia-Sastre, A, Krammer, F, Smith, GJD, Fouchier, RAM, Peiris, M, Kedzierska, K, Doherty, PC, Palese, P, Shaw, ML, Treanor, J, Webster, RG, and Garcia-Sastre, A
- Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
- Published
- 2018
24. Primary Human Influenza B Virus Infection Induces Cross-Lineage Hemagglutinin Stalk-Specific Antibodies Mediating Antibody-Dependent Cellular Cytoxicity
- Author
-
de Vries, Rory, Nieuwkoop, Nella, van der Klis, FRM, Koopmans, Marion, Krammer, F, Rimmelzwaan, Guus, de Vries, Rory, Nieuwkoop, Nella, van der Klis, FRM, Koopmans, Marion, Krammer, F, and Rimmelzwaan, Guus
- Published
- 2018
25. Mortality among Workers Receiving Compensation Awards for Silicosis in Ontario 1940-85
- Author
-
Finkelstein, M., Liss, G. M., Krammer, F., and Kusiak, R. A.
- Published
- 1987
26. Influenza-Specific Antibody-Dependent Phagocytosis
- Author
-
Krammer, F, Ana-Sosa-Batiz, F, Vanderven, H, Jegaskanda, S, Johnston, A, Rockman, S, Laurie, K, Barr, I, Reading, P, Lichtfuss, M, Kent, SJ, Krammer, F, Ana-Sosa-Batiz, F, Vanderven, H, Jegaskanda, S, Johnston, A, Rockman, S, Laurie, K, Barr, I, Reading, P, Lichtfuss, M, and Kent, SJ
- Abstract
BACKGROUND: Immunity to human influenza A virus (IAV) infection is only partially understood. Broadly non-neutralizing antibodies may assist in reducing disease but have not been well characterized. METHODS: We measured internalization of opsonized, influenza protein-coated fluorescent beads and live IAV into a monocytic cell line to study antibody-dependent phagocytosis (ADP) against multiple influenza hemagglutinin (HA) subtypes. We analyzed influenza HA-specific ADP in healthy human donors, in preparations of intravenous immunoglobulin (IVIG), and following IAV infection of humans and macaques. RESULTS: We found that both sera from healthy adults and IVIG preparations had broad ADP to multiple seasonal HA proteins and weak cross-reactive ADP to non-circulating HA proteins. The ADP in experimentally influenza-infected macaque plasma and naturally influenza-infected human sera mediated phagocytosis of both homologous and heterologous IAVs. Further, the IAV phagocytosed in an antibody-mediated manner had reduced infectivity in vitro. CONCLUSION: We conclude that IAV infections in humans and macaques leads to the development of influenza-specific ADP that can clear IAV infection in vitro. Repeated exposure of humans to multiple IAV infections likely leads to the development of ADP that is cross-reactive to strains not previously encountered. Further analyses of the protective capacity of broadly reactive influenza-specific ADP is warranted.
- Published
- 2016
27. Interfering with the Chronic Immune Response Rescues Chronic Degeneration After Traumatic Brain Injury
- Author
-
Erturk, A., primary, Mentz, S., additional, Stout, E. E., additional, Hedehus, M., additional, Dominguez, S. L., additional, Neumaier, L., additional, Krammer, F., additional, Llovera, G., additional, Srinivasan, K., additional, Hansen, D. V., additional, Liesz, A., additional, Scearce-Levie, K. A., additional, and Sheng, M., additional
- Published
- 2016
- Full Text
- View/download PDF
28. Epidemiological and Virological Characteristics of Influenza Viruses Circulating in Cambodia from 2009 to 2011
- Author
-
Krammer, F, Horm, SV, Mardy, S, Rith, S, Ly, S, Heng, S, Vong, S, Kitsutani, P, Ieng, V, Tarantola, A, Sar, B, Chea, N, Sokhal, B, Barr, I, Kelso, A, Horwood, PF, Timmermans, A, Hurt, A, Lon, C, Saunders, D, Ung, SA, Asgari, N, Roces, MC, Touch, S, Komadina, N, Buchy, P, Krammer, F, Horm, SV, Mardy, S, Rith, S, Ly, S, Heng, S, Vong, S, Kitsutani, P, Ieng, V, Tarantola, A, Sar, B, Chea, N, Sokhal, B, Barr, I, Kelso, A, Horwood, PF, Timmermans, A, Hurt, A, Lon, C, Saunders, D, Ung, SA, Asgari, N, Roces, MC, Touch, S, Komadina, N, and Buchy, P
- Abstract
BACKGROUND: The Cambodian National Influenza Center (NIC) monitored and characterized circulating influenza strains from 2009 to 2011. METHODOLOGY/PRINCIPAL FINDINGS: Sentinel and study sites collected nasopharyngeal specimens for diagnostic detection, virus isolation, antigenic characterization, sequencing and antiviral susceptibility analysis from patients who fulfilled case definitions for influenza-like illness, acute lower respiratory infections and event-based surveillance. Each year in Cambodia, influenza viruses were detected mainly from June to November, during the rainy season. Antigenic analysis show that A/H1N1pdm09 isolates belonged to the A/California/7/2009-like group. Circulating A/H3N2 strains were A/Brisbane/10/2007-like in 2009 before drifting to A/Perth/16/2009-like in 2010 and 2011. The Cambodian influenza B isolates from 2009 to 2011 all belonged to the B/Victoria lineage represented by the vaccine strains B/Brisbane/60/2008 and B/Malaysia/2506/2004. Sequences of the M2 gene obtained from representative 2009-2011 A/H3N2 and A/H1N1pdm09 strains all contained the S31N mutation associated with adamantanes resistance except for one A/H1N1pdm09 strain isolated in 2011 that lacked this mutation. No reduction in the susceptibility to neuraminidase inhibitors was observed among the influenza viruses circulating from 2009 to 2011. Phylogenetic analysis revealed that A/H3N2 strains clustered each year to a distinct group while most A/H1N1pdm09 isolates belonged to the S203T clade. CONCLUSIONS/SIGNIFICANCE: In Cambodia, from 2009 to 2011, influenza activity occurred throughout the year with peak seasonality during the rainy season from June to November. Seasonal influenza epidemics were due to multiple genetically distinct viruses, even though all of the isolates were antigenically similar to the reference vaccine strains. The drug susceptibility profile of Cambodian influenza strains revealed that neuraminidase inhibitors would be the drug of choice for
- Published
- 2014
29. Hemagglutinin Stalk-Based Universal Vaccine Constructs Protect against Group 2 Influenza A Viruses
- Author
-
Margine, I., primary, Krammer, F., additional, Hai, R., additional, Heaton, N. S., additional, Tan, G. S., additional, Andrews, S. A., additional, Runstadler, J. A., additional, Wilson, P. C., additional, Albrecht, R. A., additional, García-Sastre, A., additional, and Palese, P., additional
- Published
- 2013
- Full Text
- View/download PDF
30. Role of the Difference Tone f2‐f1 in Masking
- Author
-
Krammer, F. G., primary and Greenwood, D. D., additional
- Published
- 1974
- Full Text
- View/download PDF
31. A pan-orthohantavirus human lung xenograft mouse model and its utility for preclinical studies.
- Author
-
Rissmann M, Noack D, Spliethof TM, Vaes VP, Stam R, van Run P, Clark JJ, Verjans GMGM, Haagmans BL, Krammer F, Koopmans MPG, van den Brand JMA, and Rockx B
- Subjects
- Animals, Mice, Humans, Hantavirus Infections virology, Orthohantavirus physiology, Heterografts, Antibodies, Neutralizing immunology, Disease Models, Animal, Lung virology, Lung pathology
- Abstract
Orthohantaviruses are emerging zoonotic viruses that can infect humans via the respiratory tract. There is an unmet need for an in vivo model to study infection of different orthohantaviruses in physiologically relevant tissue and to assess the efficacy of novel pan-orthohantavirus countermeasures. Here, we describe the use of a human lung xenograft mouse model to study the permissiveness for different orthohantavirus species and to assess its utility for preclinical testing of therapeutics. Following infection of xenografted human lung tissues, distinct orthohantavirus species differentially replicated in the human lung and subsequently spread systemically. The different orthohantaviruses primarily targeted the endothelium, respiratory epithelium and macrophages in the human lung. A proof-of-concept preclinical study showed treatment of these mice with a virus neutralizing antibody could block Andes orthohantavirus infection and dissemination. This pan-orthohantavirus model will facilitate progress in the fundamental understanding of pathogenesis and virus-host interactions for orthohantaviruses. Furthermore, it is an invaluable tool for preclinical evaluation of novel candidate pan-orthohantavirus intervention strategies., Competing Interests: I have read the journal's policy and the authors of this manuscript have the following competing interests: The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays, NDV-based SARS-CoV-2 vaccines, influenza virus vaccines and influenza virus therapeutics which list FK as co-inventor and of which several have been licensed. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, Castlevax, to develop SARS-CoV-2 vaccines. FK is co-founder and scientific advisory board member of Castlevax. FK has consulted for Merck, Curevac, Seqirus and Pfizer and is currently consulting for 3rd Rock Ventures, GSK, Gritstone and Avimex. The Krammer laboratory is also collaborating with Dynavax on influenza vaccine development. All other authors have no conflicts of interest to report., (Copyright: © 2025 Rissmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2025
- Full Text
- View/download PDF
32. Host-microbe multiomic profiling identifies distinct COVID-19 immune dysregulation in solid organ transplant recipients.
- Author
-
Pickering H, Schaenman J, Phan HV, Maguire C, Tsitsiklis A, Rouphael N, Higuita NIA, Atkinson MA, Brakenridge S, Fung M, Messer W, Salehi-Rad R, Altman MC, Becker PM, Bosinger SE, Eckalbar W, Hoch A, Doni Jayavelu N, Kim-Schulze S, Jenkins M, Kleinstein SH, Krammer F, Maecker HT, Ozonoff A, Diray-Arce J, Shaw A, Baden L, Levy O, Reed EF, and Langelier CR
- Subjects
- Humans, Male, Female, Middle Aged, Prospective Studies, Adult, Aged, Immunity, Innate, Chemokines metabolism, Chemokines blood, Gene Expression Profiling, Antibodies, Viral blood, Antibodies, Viral immunology, Host Microbial Interactions immunology, COVID-19 immunology, COVID-19 virology, Transplant Recipients, SARS-CoV-2 immunology, Organ Transplantation adverse effects
- Abstract
Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels. In addition, transplant recipients exhibit decreased plasmablasts and transitional B cells, and increased senescent T cells. Blood and nasal transcriptional profiling demonstrate unexpected upregulation of innate immune signaling pathways and increased levels of several proinflammatory serum chemokines. Severe disease in transplant recipients, however, is characterized by a less robust induction of pro-inflammatory genes and chemokines. Together, our study reveals distinct immune features and altered viral dynamics in solid organ transplant recipients., Competing Interests: Competing interests: F.K. has the following financial interests: The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays, NDV-based SARS-CoV-2 vaccines, influenza virus vaccines, and influenza virus therapeutics which list Florian Krammer as co-inventor (Patent title and number: Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 9,371,366; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 1) 10,131,695; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 2934581; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 9,968,670; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 10,137,189, Influenza Virus Vaccines and Uses Thereof (Chimeric HA 2) 10,583,188; Influenza Virus Vaccines and Uses Thereof (Chimeric HA 1) EP2758075; Influenza Virus Vaccination Regimens (Neuraminidase) 10,736,956; Anti-Influenza B Virus Neuraminidase Antibodies and Uses Thereof 11254733; Influenza Virus Hemagluttinin Proteins and Uses Thereof (Mosaic) 7237344). Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, Castlevax, to develop SARS-CoV-2 vaccines. F.K. is a co-founder and scientific advisory board member of Castlevax. F.K. has consulted for Merck, Curevac, Seqirus, and Pfizer and is currently consulting for 3rd Rock Ventures, GSK, Gritstone, and Avimex. The Krammer laboratory is also collaborating with Dynavax on influenza vaccine development. R.R.M. has a Leadership Councilor role 2018-2021 for the Society of Leukocyte Biology. O.L. has received support as a speaker for presentation regarding the Coronavirus pandemic from Midsized Bank Coalition of Americ (MBCA) and Moody’s Analytics. N.G.R. has research grants from Pfizer, Merck, Sanofi, Quidel, Immorna, Vaccine Company, and Lilly, serves on safety committees for ICON and EMMES and the advisory boards of Moderna, Seqirus, Pfizer, and Sanofi, and is a paid safety consultant for ICON, CyanVac and EMMES. The remaining authors declare no competing interests., (© 2025. The Author(s).)
- Published
- 2025
- Full Text
- View/download PDF
33. Targets of influenza human T-cell response are mostly conserved in H5N1.
- Author
-
Sidney J, Kim A-R, de Vries RD, Peters B, Meade PS, Krammer F, Grifoni A, and Sette A
- Abstract
Frequent recent spillovers of subtype H5N1 clade 2.3.4.4b highly pathogenic avian influenza (HPAI) virus into poultry and mammals, especially dairy cattle, including several human cases, increased concerns over a possible future pandemic. Here, we performed an analysis of epitope data curated in the Immune Epitope Database (IEDB). We found that the patterns of immunodominance of seasonal influenza viruses circulating in humans and H5N1 are similar. We further conclude that a significant fraction of the T-cell epitopes is conserved at a level associated with cross-reactivity between avian and seasonal sequences, and we further experimentally demonstrate extensive cross-reactivity in the most dominant T-cell epitopes curated in the IEDB. Based on these observations, and the overall similarity of the neuraminidase (NA) N1 subtype encoded in both HPAI and seasonal H1N1 influenza virus as well as cross-reactive group 1 HA stalk-reactive antibodies, we expect that a degree of pre-existing immunity is present in the general human population that could blunt the severity of human H5N1 infections.IMPORTANCEInfluenza A viruses (IAVs) cause pandemics that can result in millions of deaths. The highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype is presently among the top viruses of pandemic concern, according to the WHO and the National Institute of Allergy and Infectious Diseases (NIAID). Previous exposure by infection and/or vaccination to a given IAV subtype or clade influences immune responses to a different subtype or clade. Analysis of human CD4 and CD8 T-cell epitope conservation between HPAI H5N1 and seasonal IAV sequences revealed levels of identity and conservation conducive to T cell cross-reactivity, suggesting that pre-existing T cell immune memory should, to a large extent, cross-recognize avian influenza viruses. This observation was experimentally verified by testing responses from human T cells to non-avian IAV and their HPAI H5N1 counterparts. Accordingly, should a more widespread HPAI H5N1 outbreak occur, we hypothesize that cross-reactive T-cell responses might be able to limit disease severity.
- Published
- 2024
- Full Text
- View/download PDF
34. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination.
- Author
-
Clark JJ, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, and Krammer F
- Subjects
- Humans, Animals, Mice, Vaccination, Female, Epitopes immunology, Spike Glycoprotein, Coronavirus immunology, SARS-CoV-2 immunology, Antibodies, Viral immunology, COVID-19 immunology, COVID-19 prevention & control, COVID-19 virology, Cross Reactions immunology, Antibodies, Neutralizing immunology, COVID-19 Vaccines immunology, Antibodies, Monoclonal immunology
- Abstract
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective., Competing Interests: Declaration of interests The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays, NDV-based SARS-CoV-2 vaccines, influenza virus vaccines, and influenza virus therapeutics, which list F.K. as co-inventor. V.S. is also listed as inventor on the SARS-CoV-2 serological assays patent, and W.S. is listed as inventor on the NDV-based SARS-CoV-2 vaccine IP. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, Castlevax, to develop SARS-CoV-2 vaccines. F.K. and W.S. are co-founders and scientific advisory board members of Castlevax. F.K. has consulted for Merck, Curevac, Seqirus, GSK, and Pfizer and is currently consulting for Third Rock Ventures, Sanofi, Gritstone, and Avimex. F.K. is a recipient of royalties from a licensing agreement with Leyden Laboratories B.V. The Krammer laboratory is also collaborating with Dynavax on influenza vaccine development and VIR on influenza therapeutics development. The Ellebedy laboratory has received funding under sponsored research agreements from Moderna, Emergent BioSolutions, and AbbVie. A.H.E. has received consulting and speaking fees from InBios International, Inc., Fimbrion Therapeutics, RGAX, Mubadala Investment Company, AstraZeneca, Moderna, Pfizer, GSK, Danaher, Third Rock Ventures, Goldman Sachs, and Morgan Stanley, is the founder of ImmuneBio Consulting, and is a recipient of royalties from licensing agreements with Abbvie and Leyden Laboratories B.V., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
35. Unraveling SARS-CoV-2 Host-Response Heterogeneity through Longitudinal Molecular Subtyping.
- Author
-
Wang K, Nie Y, Maguire C, Syphurs C, Sheen H, Karoly M, Lapp L, Gygi JP, Jayavelu ND, Patel RK, Hoch A, Corry D, Kheradmand F, McComsey GA, Fernandez-Sesma A, Simon V, Metcalf JP, Higuita NIA, Messer WB, Davis MM, Nadeau KC, Kraft M, Bime C, Schaenman J, Erle D, Calfee CS, Atkinson MA, Brackenridge SC, Hafler DA, Shaw A, Rahman A, Hough CL, Geng LN, Ozonoff A, Haddad EK, Reed EF, van Bakel H, Kim-Schultz S, Krammer F, Wilson M, Eckalbar W, Bosinger S, Langelier CR, Sekaly RP, Montgomery RR, Maecker HT, Krumholz H, Melamed E, Steen H, Pulendran B, Augustine AD, Cairns CB, Rouphael N, Becker PM, Fourati S, Shannon CP, Smolen KK, Peters B, Kleinstein SH, Levy O, Altman MC, Iwasaki A, Diray-Arce J, Ehrlich LIR, and Guan L
- Abstract
Hospitalized COVID-19 patients exhibit diverse immune responses during acute infection, which are associated with a wide range of clinical outcomes. However, understanding these immune heterogeneities and their links to various clinical complications, especially long COVID, remains a challenge. In this study, we performed unsupervised subtyping of longitudinal multi-omics immunophenotyping in over 1,000 hospitalized patients, identifying two critical subtypes linked to mortality or mechanical ventilation with prolonged hospital stay and three severe subtypes associated with timely acute recovery. We confirmed that unresolved systemic inflammation and T-cell dysfunctions were hallmarks of increased severity and further distinguished patients with similar acute respiratory severity by their distinct immune profiles, which correlated with differences in demographic and clinical complications. Notably, one critical subtype (SubF) was uniquely characterized by early excessive inflammation, insufficient anticoagulation, and fatty acid dysregulation, alongside higher incidences of hematologic, cardiac, and renal complications, and an elevated risk of long COVID. Among the severe subtypes, significant differences in viral clearance and early antiviral responses were observed, with one subtype (SubC) showing strong early T-cell cytotoxicity but a poor humoral response, slower viral clearance, and greater risks of chronic organ dysfunction and long COVID. These findings provide crucial insights into the complex and context-dependent nature of COVID-19 immune responses, highlighting the importance of personalized therapeutic strategies to improve both acute and long-term outcomes.
- Published
- 2024
- Full Text
- View/download PDF
36. Preclinical evaluation of a universal inactivated influenza B vaccine based on the mosaic hemagglutinin-approach.
- Author
-
González-Domínguez I, Puente-Massaguer E, Abdeljawad A, Lai TY, Liu Y, Loganathan M, Francis B, Lemus N, Dolange V, Boza M, Slamanig S, Martínez-Guevara JL, Krammer F, Palese P, and Sun W
- Abstract
We have developed a new universal influenza B vaccination strategy based on inactivated influenza B viruses displaying mosaic hemagglutinins (mHAs). Recombinant mHA viruses were constructed by replacing the four major antigenic sites of influenza B virus HAs, with those from exotic avian influenza A virus HAs. Sequential vaccination of naïve mice with mHA-based vaccines elicited higher immune responses towards the immuno-subdominant conserved epitopes of the HA than vaccination with wildtype viruses. Among the different preparations tested, mHA split vaccines were less immunogenic than their whole inactivated virus counterparts. This lower immunogenicity was overcome by the combination with adjuvants. mHA split vaccines adjuvanted with a Toll-like receptor-9 agonist (CpG 1018) increased Th1 immunity and in vivo cross-protection, whereas adjuvanting with an MF59-like oil-in-water nano-emulsion (AddaVax) enhanced and broadened humoral immune responses and antibody-mediated cross-protection. The mHA vaccines with or without adjuvant were subsequently evaluated in mice that were previously immunized to closely mimic human pre-existing immunity to influenza B viruses and the contribution of innate and cellular immunity was evaluated in this model. We believe these preclinical studies using the mHA strategy represent a major step toward the evaluation of a universal influenza B virus vaccine in clinical trials., Competing Interests: Competing interests The Icahn School of Medicine at Mount Sinai and Dynavax have filed a patent application in which P.P., W.S., I.G.D. and F.K. are listed as co-inventors. The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays, NDV-based SARS-CoV-2 vaccines, influenza virus vaccines and influenza virus therapeutics which list F.K. as co-inventor. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, Castlevax, to develop SARS-CoV-2 vaccines. F.K., P.P. and W.S. are co-founder of Castlevax. F.K. has consulted for Merck, Curevac, Seqirus and Pfizer and is currently consulting for 3rd Rock Ventures, GSK, Gritstone and Avimex. The Krammer laboratory is also collaborating with Dynavax on influenza A virus vaccine development. All other authors declare no competing interests., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
37. Chronic Viral Reactivation and Associated Host Immune Response and Clinical Outcomes in Acute COVID-19 and Post-Acute Sequelae of COVID-19.
- Author
-
Maguire C, Chen J, Rouphael N, Pickering H, Phan HV, Glascock A, Chu V, Dandekar R, Corry D, Kheradmand F, Baden LR, Selaky R, McComsey GA, Haddad EK, Cairns CB, Pulendran B, Fernandez-Sesma A, Simon V, Metcalf JP, Higuita NIA, Messer WB, David MM, Nadeau KC, Kraft M, Bime C, Schaenman J, Erle D, Calfee CS, Atkinson MA, Brackenridge SC, Ehrlich LIR, Montgomery RR, Shaw AC, Hough CL, Geng LN, Hafler DA, Augustine AD, Becker PM, Peters B, Ozonoff A, Kim-Schulze SH, Krammer F, Bosinger S, Eckalbar W, Altman MC, Wilson M, Guan L, Kleinstein SH, Smolen KK, Reed EF, Levy O, Maecker H, Hunt P, Steen H, Diray-Arce J, Langelier CR, and Melamed E
- Abstract
Chronic viral infections are ubiquitous in humans, with individuals harboring multiple latent viruses that can reactivate during acute illnesses. Recent studies have suggested that SARS-CoV-2 infection can lead to reactivation of latent viruses such as Epstein-Barr Virus (EBV) and cytomegalovirus (CMV), yet, the extent and impact of viral reactivation in COVID-19 and its effect on the host immune system remain incompletely understood. Here we present a comprehensive multi-omic analysis of viral reactivation of all known chronically infecting viruses in 1,154 hospitalized COVID-19 patients, from the Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study, who were followed prospectively for twelve months. We reveal significant reactivation of Herpesviridae , Enteroviridae , and Anelloviridae families during acute stage of COVID-19 (0-40 days post-hospitalization), each exhibiting distinct temporal dynamics. We also show that viral reactivation correlated with COVID-19 severity, demographic characteristics, and clinical outcomes, including mortality. Integration of cytokine profiling, cellular immunophenotyping, metabolomics, transcriptomics, and proteomics demonstrated virus-specific host responses, including elevated pro-inflammatory cytokines (e.g. IL-6, CXCL10, and TNF), increased activated CD4+ and CD8+ T-cells, and upregulation of cellular replication genes, independent of COVID-19 severity and SARS-CoV-2 viral load. Notably, persistent Anelloviridae reactivation during convalescence (≥3 months post-hospitalization) was associated with Post-Acute Sequelae of COVID-19 (PASC) symptoms, particularly physical function and fatigue. Our findings highlight a remarkable prevalence and potential impact of chronic viral reactivation on host responses and clinical outcomes during acute COVID-19 and long term PASC sequelae. Our data provide novel immune, transcriptomic, and metabolomic biomarkers of viral reactivation that may inform novel approaches to prognosticate, prevent, or treat acute COVID-19 and PASC., Competing Interests: IMPACC Network Competing Interests The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays and NDV-based SARS-CoV-2 vaccines which list Florian Krammer as co-inventor. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2. Florian Krammer has consulted for Merck and Pfizer (before 2020), and is currently consulting for Pfizer, Seqirus, 3rd Rock Ventures, Merck and Avimex. The Krammer laboratory is also collaborating with Pfizer on animal models of SARS-CoV-2. Viviana Simon is a co-inventor on a patent filed relating to SARS-CoV-2 serological assays (the “Serology Assays”). Ofer Levy is a named inventor on patents held by Boston Children’s Hospital relating to vaccine adjuvants and human in vitro platforms that model vaccine action. His laboratory has received research support from GlaxoSmithKline (GSK) and is a co-founder of and advisor to Ovax, Inc. Charles Cairns serves as a consultant to bioMerieux and is funded for a grant from Bill & Melinda Gates Foundation. James A Overton is a consultant at Knocean Inc. Jessica Lasky-Su serves as a scientific advisor of Precion Inc. Scott R. Hutton, Greg Michelloti and Kari Wong are employees of Metabolon Inc. Vicki Seyfert-Margolis is a current employee of MyOwnMed. Nadine Rouphael reports grants or contracts with Merck, Sanofi, Pfizer, Vaccine Company, Quidel, Lilly and Immorna, and has participated on data safety monitoring boards for Moderna, Sanofi, Seqirus, Pfizer, EMMES, ICON, BARDA, Imunon, CyanVac and Micron. Nadine Rouphael has also received support for meetings/travel from Sanofi and Moderna and honoraria from Virology Education. Adeeb Rahman is a current employee of Immunai Inc. Steven Kleinstein is a consultant related to ImmPort data repository for Peraton. Nathan Grabaugh is a consultant for Tempus Labs and the National Basketball Association. Akiko Iwasaki is a consultant for 4BIO, Blue Willow Biologics, Revelar Biotherapeutics, RIGImmune, Xanadu Bio, Paratus Sciences. Monika Kraft receives research funds paid to her institution from NIH, ALA; Sanofi, Astra-Zeneca for work in asthma, serves as a consultant for Astra-Zeneca, Sanofi, Chiesi, GSK for severe asthma; is a co-founder and CMO for RaeSedo, Inc, a company created to develop peptidomimetics for treatment of inflammatory lung disease. Esther Melamed received research funding from Babson Diagnostics and honorarium from Multiple Sclerosis Association of America and has served on the advisory boards of Genentech, Horizon, Teva, and Viela Bio. Carolyn Calfee receives research funding from NIH, FDA, DOD, Roche-Genentech and Quantum Leap Healthcare Collaborative as well as consulting services for Janssen, Vasomune, Gen1e Life Sciences, NGMBio, and Cellenkos. Wade Schulz was an investigator for a research agreement, through Yale University, from the Shenzhen Center for Health Information for work to advance intelligent disease prevention and health promotion; collaborates with the National Center for Cardiovascular Diseases in Beijing; is a technical consultant to Hugo Health, a personal health information platform; cofounder of Refactor Health, an AI-augmented data management platform for health care; and has received grants from Merck and Regeneron Pharmaceutical for research related to COVID-19. Grace A McComsey received research grants from Redhill, Cognivue, Pfizer, and Genentech, and served as a research consultant for Gilead, Merck, Viiv/GSK, and Jenssen. Linda N. Geng received research funding paid to her institution from Pfizer, Inc.
- Published
- 2024
- Full Text
- View/download PDF
38. Pre-existing H1N1 immunity reduces severe disease with bovine H5N1 influenza virus.
- Author
-
Le Sage V, Werner BD, Merrbach GA, Petnuch SE, O'Connell AK, Simmons HC, McCarthy KR, Reed DS, Moncla LH, Bhavsar D, Krammer F, Crossland NA, McElroy AK, Duprex WP, and Lakdawala SS
- Abstract
The emergence of highly pathogenic H5N1 avian influenza in dairy cattle herds across the United States has caused multiple mild human infections. There is an urgent need to understand the risk of spillover into humans. Here, we show that pre-existing immunity from the 2009 H1N1 pandemic influenza virus provided protection from mortality and severe clinical disease to ferrets intranasally infected with bovine H5N1. H1N1 immune ferrets exhibited a differential tissue tropism with little bovine H5N1 viral dissemination to organs outside the respiratory tract and significantly less H5N1 virus found in nasal secretions and the respiratory tract. Additionally, ferrets with H1N1 prior immunity produced antibodies that cross-reacted with H5N1 neuraminidase protein. Taken together, these results suggest that mild disease in humans may be linked to prior immunity to human seasonal influenza viruses., Competing Interests: Competing interest statement The Icahn School of Medicine at Mount Sinai has filed patent applications relating to influenza virus vaccines and therapeutic vaccines which list Florian Krammer as co-inventor. Several of these patents have been licensed and Florian Krammer has received royalty payments from commercial entities. Florian Krammer has consulted for Merck, Pfizer, Seqirus, GSK and Curevac and is currently consulting for Gritstone, 3rd Rock Ventures and Avimex and he is a co-founder and scientific advisory board member of CastleVax. The Krammer laboratory is also collaborating with Dynavax on influenza virus vaccine development and with VIR on influenza therapeutics. All other authors declare no competing financial and/or non-financial interests in relation to the work described.
- Published
- 2024
- Full Text
- View/download PDF
39. Long-term effectiveness of an ultra-rapid rollout vaccination campaign with BNT162b2 on the incidence of SARS-CoV-2 infection.
- Author
-
Tschiderer L, Innerhofer H, Seekircher L, Waltle L, Richter L, Kimpel J, Lass-Flörl C, Forer L, Schönherr S, Larsen DA, Krammer F, Embacher-Aichhorn S, Tilg H, Weiss G, Allerberger F, and Willeit P
- Abstract
In 2021, an ultra-rapid rollout vaccination campaign in the Schwaz district, Tyrol, Austria, delivered the COVID-19 vaccine BNT162b2 to 66.9% of eligible residents (dose 1: March 11-16, dose 2: April 8-13). Alongside the campaign, we recruited 11,955 residents into the prospective study REDUCE, of whom 3,859 participated in a booster vaccination initiative (November 20-28, 2021). Over a 24-month follow-up, 1,672 participants had incident RT-PCR-confirmed SARS-CoV-2. Compared to other Tyrolean districts, effectiveness in reducing SARS-CoV-2 infection at months 1-9 versus months 10-24 was 81.6% (95% CI 80.0-83.2%; hazard ratio 0.18 [0.17-0.20]) versus 38.2% (35.8-40.6%; 0.62 [0.59-0.64]) among REDUCE participants, and 22.5% (20.5-24.4%; 0.78 [0.76-0.80]) versus 17.0% (16.2-17.8%; 0.83 [0.82-0.84]) in the entire Schwaz district, with substantial variability during follow-up. By March 2023, 61% of Schwaz residents had received booster vaccination versus 55% in other Tyrolean districts. Consequently, vaccinating individuals at high pace effectively reduced SARS-CoV-2 infections and achieved higher vaccination coverage., Competing Interests: P.W. reports consulting fees from Novartis Pharmaceuticals; outside the submitted work. The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays, NDV-based SARS-CoV-2 vaccines influenza virus vaccines and influenza virus therapeutics which list F.K. as co-inventor. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, CastleVax, to develop SARS-CoV-2 vaccines. F.K.is co-founder and scientific advisory board member of CastleVax. F.K. has consulted for Merck, Curevac, Seqirus, and Pfizer and is currently consulting for 3rd Rock Ventures, GSK, Gritstone, and Avimex. The Krammer laboratory is collaborating with Dynavax on influenza vaccine development., (© 2024 The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
40. Meeting Report From "Correlates of Protection for Next Generation Influenza Vaccines: Lessons Learned From the COVID-19 Pandemic".
- Author
-
Krammer F, Katz JM, Engelhardt OG, Post DJ, Roberts PC, Sullivan SG, Tompkins SM, Chiu C, Schultz-Cherry S, and Cox RJ
- Subjects
- Humans, SARS-CoV-2 immunology, Immunity, Mucosal, Pandemics prevention & control, Influenza Vaccines immunology, Influenza Vaccines administration & dosage, COVID-19 prevention & control, COVID-19 immunology, COVID-19 epidemiology, Influenza, Human prevention & control, Influenza, Human epidemiology, Influenza, Human immunology
- Abstract
Background: This report summarizes the discussions and conclusions from the "Correlates of Protection for Next Generation Influenza Vaccines: Lessons Learned from the COVID-19 Pandemic" meeting, which took place in Seattle, USA, from March 1, 2023, to March 3, 2023., Conclusions: Discussions around influenza virus correlates of protection and their use continued from where the discussion had been left off in 2019. While there was not much progress in the influenza field itself, many lessons learned during the coronavirus disease 2019 (COVID-19) pandemic, especially the importance of mucosal immunity, were discussed and can directly be applied to influenza correlates of protection., (© 2024 The Author(s). Influenza and Other Respiratory Viruses published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
41. Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States.
- Author
-
Perofsky AC, Huddleston J, Hansen CL, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Lewis N, Whittaker L, Ermetal B, Harvey R, Galiano M, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Sullivan SG, Barr IG, Subbarao K, Krammer F, Bedford T, and Viboud C
- Subjects
- United States epidemiology, Humans, Child, Adult, Neuraminidase genetics, Neuraminidase immunology, Adolescent, Child, Preschool, Antigens, Viral immunology, Antigens, Viral genetics, Young Adult, Evolution, Molecular, Seasons, Middle Aged, Influenza A Virus, H3N2 Subtype genetics, Influenza A Virus, H3N2 Subtype immunology, Influenza, Human epidemiology, Influenza, Human virology, Influenza, Human immunology, Hemagglutinin Glycoproteins, Influenza Virus genetics, Hemagglutinin Glycoproteins, Influenza Virus immunology, Epidemics, Antigenic Drift and Shift genetics
- Abstract
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity., Competing Interests: AP, JH, JB, TR, XX, RK, DW, NL, LW, BE, RH, MG, RD, SF, KN, NK, SW, HH, TB No competing interests declared, CH Received personal fees from Sanofi outside the submitted work, JM Received consulting fees, honoraria, and travel support from Sanofi Pasteur and Sequris, SS The WHO Collaborating Centre for Reference and Research on Influenza in Melbourne has a collaborative research and development agreement (CRADA) with CSL Seqirus for isolation of candidate vaccine viruses in cells and an agreement with IFPMA for isolation of candidate vaccine viruses in eggs. SGS reports honoraria from CSL Seqirus, Moderna, Pfizer, and Evo Health, IB, KS The WHO Collaborating Centre for Reference and Research on Influenza in Melbourne has a collaborative research and development agreement (CRADA) with CSL Seqirus for isolation of candidate vaccine viruses in cells and an agreement with IFPMA for isolation of candidate vaccine viruses in eggs, FK The Icahn School of Medicine at Mount Sinai has filed patent applications relating to influenza virus vaccines (U.S. patent numbers: 12030928, 11865173, 11266734, 11254733, 10736956, 10583188, 10137189, 10131695, 9968670, 9371366; publication numbers: 20230181715, 20220403358, 20220249652, 20220242935, 20220153873, 20210260179, 20190125859, 20190106461, 20180333479), SARS-CoV-2 serological assays (publication number: 20240210415), and SARS-CoV-2 vaccines (publication numbers: 20230310583, 20230226171), which list FK as co-inventor. FK has consulted for Merck and Pfizer (before 2020), and is currently consulting for Pfizer, Seqirus, 3rd Rock Ventures, GSK and Avimex. The Krammer laboratory is also collaborating with Pfizer on animal models of SARS‐CoV‐2 and with Dynavax on universal influenza virus vaccines, CV Received honoraria for serving as an Editor in Chief of the journal Epidemics (Elsevier)
- Published
- 2024
- Full Text
- View/download PDF
42. Adjuvant Use of the Invariant-Natural-Killer-T-Cell Agonist α-Galactosylceramide Leads to Vaccine-Associated Enhanced Respiratory Disease in Influenza-Vaccinated Pigs.
- Author
-
Artiaga BL, Madden D, Kwon T, McDowell C, Keating C, Balaraman V, de Carvahlo Madrid DM, Touchard L, Henningson J, Meade P, Krammer F, Morozov I, Richt JA, and Driver JP
- Abstract
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This includes harnessing iNKT-cell-mediated immune responses to adjuvant whole inactivated influenza virus (WIV) vaccines. An important concern with WIV vaccines is that under certain circumstances, they are capable of triggering vaccine-associated enhanced respiratory disease (VAERD). This immunopathological phenomenon can arise after immunization with an oil-in-water (OIW) adjuvanted WIV vaccine, followed by infection with a hemagglutinin and neuraminidase mismatched challenge virus. This elicits antibodies (Abs) that bind immunodominant epitopes in the HA2 region of the heterologous virus, which purportedly causes enhanced virus fusion activity to the host cell and increased infection. Here, we show that αGC can induce severe VAERD in pigs. However, instead of stimulating high concentrations of HA2 Abs, αGC elicits high concentrations of interferon (IFN)-γ-secreting cells both in the lungs and systemically. Additionally, we found that VAERD mediated by iNKT cells results in distinct cytokine profiles and altered adaptation of the challenge virus following infection compared to an OIW adjuvant. Overall, these results provide a cautionary note about considering the formulation of WIV vaccines with iNKT-cell agonists as a potential strategy to modulate antigen-specific immunity.
- Published
- 2024
- Full Text
- View/download PDF
43. Sequential immunization with chimeric hemagglutinin ΔNS1 attenuated influenza vaccines induces broad humoral and cellular immunity.
- Author
-
Rathnasinghe R, Chang LA, Pearl R, Jangra S, Aspelund A, Hoag A, Yildiz S, Mena I, Sun W, Loganathan M, Crossland NA, Gertje HP, Tseng AE, Aslam S, Albrecht RA, Palese P, Krammer F, Schotsaert M, Muster T, and García-Sastre A
- Abstract
Influenza viruses pose a threat to public health as evidenced by severe morbidity and mortality in humans on a yearly basis. Given the constant changes in the viral glycoproteins owing to antigenic drift, seasonal influenza vaccines need to be updated periodically and effectiveness often drops due to mismatches between vaccine and circulating strains. In addition, seasonal influenza vaccines are not protective against antigenically shifted influenza viruses with pandemic potential. Here, we have developed a highly immunogenic vaccination regimen based on live-attenuated influenza vaccines (LAIVs) comprised of an attenuated virus backbone lacking non-structural protein 1 (ΔNS1), the primary host interferon antagonist of influenza viruses, with chimeric hemagglutinins (cHA) composed of exotic avian head domains with a highly conserved stalk domain, to redirect the humoral response towards the HA stalk. In this study, we showed that cHA-LAIV vaccines induce robust serum and mucosal responses against group 1 stalk and confer antibody-dependent cell cytotoxicity activity. Mice that intranasally received cH8/1-ΔNS1 followed by a cH11/1-ΔNS1 heterologous booster had robust humoral responses for influenza A virus group 1 HAs and were protected from seasonal H1N1 influenza virus and heterologous highly pathogenic avian H5N1 lethal challenges. When compared with mice immunized with the standard of care or cold-adapted cHA-LAIV, cHA-ΔNS1 immunized mice had robust antigen-specific CD8
+ T-cell responses which also correlated with markedly reduced lung pathology post-challenge. These observations support the development of a trivalent universal influenza vaccine for the protection against group 1 and group 2 influenza A viruses and influenza B viruses., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
44. Impact of Pre-Existing Immunity and Age on Antibody Responses to Live Attenuated Influenza Vaccine.
- Author
-
Hoen L, Lartey S, Zhou F, Pathirana RD, Krammer F, Mohn KG, Cox RJ, and Brokstad KA
- Abstract
Live attenuated influenza vaccines (LAIV) typically induce a poor hemagglutination inhibition (HI) response, which is the standard correlate of protection for inactivated influenza vaccines. The significance of the HI response is complicated because the LAIV vaccine primarily induces the local mucosal immune system, while the HI assay measures the circulating serum antibody response. However, age and pre-existing immunity have been identified as important factors affecting LAIV immunogenicity. This study aimed to extend our understanding of LAIV-induced immunity, particularly, the impact age and pre-existing immunity have on eliciting functional and neutralising antibody responses in paediatric and adult populations vaccinated with LAIV. Thirty-one children and 26 adults were immunized with the trivalent LAIV during the 2013-2014 influenza season in Norway. Children under 9 years received a second dose of LAIV 28 days after the first dose. Blood samples were collected pre- and post-vaccination. HI, microneutralization (MN) and enzyme-linked lectin assay for neuraminidase (NA) antibodies were measured against the vaccine strains. IgG antibody avidity against hemagglutinin (HA) and NA proteins from the vaccine strains was also assessed. Significant correlations were observed between HI and MN responses to A/California/7/2009 (A/H1N1)pdm09-like strain and B/Massachusetts/2/2012-like strain, suggesting that MN is a potential immunological correlate for LAIV. However, the relationship between recipient age (or priming status) and serological response varied between vaccine strains. There was a notable increase in HI and MN responses in all cohorts except naive children against the H1N1 strain, where most recipients had responses below the protective antibody threshold. NAI responses were generally weak in naive children against all vaccine strains compared with adults or antigen-primed children. Post-vaccination antibody avidity increased only in primed children below nine years of age against the A/H1N1 strain. Overall, our findings indicate that LAIV elicits functional and neutralizing antibody responses in both naive and antigen experienced cohorts, however, the magnitude and kinetics of the response varies between vaccine strains.
- Published
- 2024
- Full Text
- View/download PDF
45. Broadly protective bispecific antibodies that simultaneously target influenza virus hemagglutinin and neuraminidase.
- Author
-
Ramos KE, Okba NMA, Tan J, Bandawane P, Meade PS, Loganathan M, Francis B, Shulenin S, Holtsberg FW, Aman MJ, McMahon M, Krammer F, and Lai JR
- Subjects
- Animals, Humans, Mice, Orthomyxoviridae Infections prevention & control, Orthomyxoviridae Infections immunology, Antibodies, Neutralizing immunology, Antibodies, Monoclonal immunology, Influenza, Human immunology, Influenza, Human prevention & control, Influenza, Human virology, Mice, Inbred BALB C, Influenza A Virus, H1N1 Subtype immunology, Influenza A Virus, H1N1 Subtype drug effects, Neuraminidase immunology, Hemagglutinin Glycoproteins, Influenza Virus immunology, Antibodies, Bispecific immunology, Antibodies, Bispecific pharmacology, Antibodies, Viral immunology
- Abstract
Monoclonal antibodies (mAbs) are an attractive therapeutic platform for the prevention and treatment of influenza virus infection. There are two major glycoproteins on the influenza virion surface: hemagglutinin (HA), which is responsible for viral attachment and entry, and neuraminidase (NA), which mediates viral egress by enzymatically cleaving sialic acid to release budding particles from the host cell surface. Broadly neutralizing antibodies (bNAbs) that target the conserved HA central stalk region, such as CR9114, can inhibit both viral entry and egress. More recently, broadly binding mAbs that engage and inhibit the NA active site, such as 1G01, have been described to prevent viral egress. Here, we engineered bispecific antibodies (bsAbs) that combine the variable domains of CR9114 and 1G01 into a single molecule and evaluated if simultaneous targeting of two different glycoproteins improved antiviral properties in vitro and in vivo . Several CR9114/1G01 bsAbs were generated with various configurations of the two sets of the variable domains ("bsAb formats"). We found that combinations employing the addition of a single-chain variable fragment in the hinge region of an IgG scaffold had the best properties in terms of expression, stability, and binding. Further characterization of selected bsAbs showed potent neutralizing and egress-inhibiting activity. One such bsAb ("hSC_CR9114_1G01") provided higher levels of prophylactic protection from mortality and morbidity upon challenge with H1N1 than either of the parental mAbs at low dosing (1 mg/kg). These results highlight the potential use of bsAbs that simultaneously target HA and NA as new influenza immunotherapeutics., Importance: Infection by the influenza virus remains a global health burden. The approaches utilized here to augment the activity of broadly protective influenza virus antibodies may lead to a new class of immunotherapies with enhanced activity., Competing Interests: The Icahn School of Medicine at Mount Sinai has filed patent applications regarding influenza virus vaccines and therapeutics which list F.K. as an inventor. The Krammer laboratory has received support for influenza virus research in the past from GSK and is currently receiving support from Dynavax. F.K. is currently consulting for GSK, Third Rock Ventures, Gritstone, and Avimex.
- Published
- 2024
- Full Text
- View/download PDF
46. Dissecting human monoclonal antibody responses from mRNA- and protein-based XBB.1.5 COVID-19 monovalent vaccines.
- Author
-
Fantin RF, Clark JJ, Cohn H, Jaiswal D, Bozarth B, Civljak A, Rao V, Lobo I, Nardulli JR, Srivastava K, Yong J, Andreata-Santos R, Bushfield K, Lee ES, Singh G, Kleinstein SH, Krammer F, Simon V, Bajic G, and Coelho CH
- Abstract
The emergence of highly contagious and immune-evasive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has required reformulation of coronavirus disease 2019 (COVID-19) vaccines to target those new variants specifically. While previous infections and booster vaccinations can enhance variant neutralization, it is unclear whether the monovalent version, administered using either mRNA or protein-based vaccine platforms, can elicit de novo B-cell responses specific for Omicron XBB.1.5 variants. Here, we dissected the genetic antibody repertoire of 603 individual plasmablasts derived from five individuals who received a monovalent XBB.1.5 vaccination either with mRNA (Moderna or Pfizer/BioNtech) or adjuvanted protein (Novavax). From these sequences, we expressed 100 human monoclonal antibodies and determined binding, affinity and protective potential against several SARS-CoV-2 variants, including JN.1. We then select two vaccine-induced XBB.1.5 mAbs, M2 and M39. M2 mAb was a de novo , antibody, i.e., specific for XBB.1.5 but not ancestral SARS-CoV-2. M39 bound and neutralized both XBB.1.5 and JN.1 strains. Our high-resolution cryo-electron microscopy (EM) structures of M2 and M39 in complex with the XBB.1.5 spike glycoprotein defined the epitopes engaged and revealed the molecular determinants for the mAbs' specificity. These data show, at the molecular level, that monovalent, variant-specific vaccines can elicit functional antibodies, and shed light on potential functional and genetic differences of mAbs induced by vaccinations with different vaccine platforms.\., Competing Interests: Competing interests The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARSCoV-2 serological assays, NDV-based SARS-CoV-2 vaccines influenza virus vaccines and influenza virus therapeutics which list Florian Krammer as co-inventor. Viviana Simon is listed on the SARS-CoV-2 serological assay patent application as co-inventor. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, CastleVax, to develop SARS-CoV-2 vaccines. Florian Krammer is co-founder and scientific advisory board member of CastleVax. Florian Krammer has consulted for Merck, Curevac, GSK, Seqirus and Pfizer and is currently consulting for 3rd Rock Ventures, Gritstone and Avimex. The Krammer laboratory is collaborating with Dynavax on influenza vaccine development and with VIR on influenza virus therapeutics.
- Published
- 2024
- Full Text
- View/download PDF
47. SARS-CoV-2 serosurvey across multiple waves of the COVID-19 pandemic in New York City between 2020-2023.
- Author
-
Carreño JM, Wagner AL, Monahan B, Singh G, Floda D, Gonzalez-Reiche AS, Tcheou J, Raskin A, Bielak D, Morris S, Fried M, Yellin T, Sullivan L, Sordillo EM, Gordon A, van Bakel H, Simon V, and Krammer F
- Subjects
- Humans, New York City epidemiology, Seroepidemiologic Studies, Male, Female, Adult, Middle Aged, Aged, Cross-Sectional Studies, Young Adult, Adolescent, Child, Pandemics, Child, Preschool, Infant, Aged, 80 and over, COVID-19 Vaccines immunology, COVID-19 epidemiology, COVID-19 immunology, Antibodies, Viral blood, Antibodies, Viral immunology, SARS-CoV-2 immunology, SARS-CoV-2 isolation & purification, Spike Glycoprotein, Coronavirus immunology
- Abstract
Sero-monitoring provides context to the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and changes in population immunity following vaccine introduction. Here, we describe results of a cross-sectional hospital-based study of anti-spike seroprevalence in New York City (NYC) from February 2020 to July 2022, and a follow-up period from August 2023 to October 2023. Samples from 55,092 individuals, spanning five epidemiological waves were analyzed. Prevalence ratios (PR) were obtained using Poisson regression. Anti-spike antibody levels increased gradually over the first two waves, with a sharp increase during the 3rd wave coinciding with SARS-CoV-2 vaccination in NYC resulting in seroprevalence levels >90% by July 2022. Our data provide insights into the dynamic changes in immunity occurring in a large and diverse metropolitan community faced with a new viral pathogen and reflects the patterns of antibody responses as the pandemic transitions into an endemic stage., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
48. H19 influenza A virus exhibits species-specific MHC class II receptor usage.
- Author
-
Karakus U, Mena I, Kottur J, El Zahed SS, Seoane R, Yildiz S, Chen L, Plancarte M, Lindsay L, Halpin R, Stockwell TB, Wentworth DE, Boons GJ, Krammer F, Stertz S, Boyce W, de Vries RP, Aggarwal AK, and García-Sastre A
- Subjects
- Animals, Humans, Virus Internalization, Influenza in Birds virology, Binding Sites, Protein Binding, Crystallography, X-Ray, Cell Line, N-Acetylneuraminic Acid metabolism, Host Specificity, Species Specificity, Influenza A virus genetics, Influenza A virus immunology, Receptors, Virus metabolism, Receptors, Virus genetics, Phylogeny, Hemagglutinin Glycoproteins, Influenza Virus genetics, Hemagglutinin Glycoproteins, Influenza Virus metabolism, Hemagglutinin Glycoproteins, Influenza Virus immunology, Histocompatibility Antigens Class II metabolism, Histocompatibility Antigens Class II genetics, Ducks virology
- Abstract
Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry., Competing Interests: Declaration of interests The A.G.-S. laboratory has received research support from GSK, Pfizer, Senhwa Biosciences, Kenall Manufacturing, Blade Therapeutics, Avimex, Johnson & Johnson, Dynavax, 7Hills Pharma, Pharmamar, ImmunityBio, Accurius, Nanocomposix, Hexamer, N-fold LLC, Model Medicines, Atea Pharma, Applied Biological Laboratories, and Merck outside of the reported work. A.G.-S. has consulting agreements for the following companies involving cash and/or stock: Castlevax, Amovir, Vivaldi Biosciences, Contrafect, 7Hills Pharma, Avimex, Pagoda, Accurius, Esperovax, Farmak, Applied Biological Laboratories, Pharmamar, CureLab Oncology, CureLab Veterinary, Synairgen, Paratus, Pfizer, and Prosetta, outside of the reported work. A.G.-S. has been an invited speaker in meeting events organized by Seqirus, Janssen, Abbott, and Astrazeneca. A.G.-S. is an inventor on patents and patent applications on the use of antivirals and vaccines for the treatment and prevention of virus infections and cancer, owned by the Icahn School of Medicine at Mount Sinai, New York, outside of the reported work. The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays, NDV-based SARS-CoV-2 vaccines, influenza virus vaccines, and influenza virus therapeutics, which list F.K. as co-inventor. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2 and another company, Castlevax, to develop SARS-CoV-2 vaccines. F.K. is a co-founder and scientific advisory board member of Castlevax. F.K. has consulted for Merck, Curevac, Seqirus, and Pfizer and is currently consulting for 3rd Rock Ventures, GSK, Gritstone, and Avimex. The Krammer laboratory is also collaborating with Dynavax on influenza vaccine development., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
49. Intranasal SARS-CoV-2 Omicron variant vaccines elicit humoral and cellular mucosal immunity in female mice.
- Author
-
Slamanig S, González-Domínguez I, Chang LA, Lemus N, Lai TY, Martínez JL, Singh G, Dolange V, Abdeljawad A, Kowdle S, Noureddine M, Warang P, Singh G, Lee B, García-Sastre A, Krammer F, Schotsaert M, Palese P, and Sun W
- Subjects
- Animals, Female, Mice, Immunity, Cellular, Immunoglobulin A immunology, Nanoparticles administration & dosage, Nanoparticles chemistry, Antibodies, Neutralizing immunology, Vaccination methods, Humans, Liposomes, SARS-CoV-2 immunology, SARS-CoV-2 genetics, COVID-19 Vaccines immunology, COVID-19 Vaccines administration & dosage, Administration, Intranasal, Immunity, Mucosal, Immunity, Humoral, COVID-19 prevention & control, COVID-19 immunology, Antibodies, Viral immunology, Antibodies, Viral blood, Spike Glycoprotein, Coronavirus immunology, Spike Glycoprotein, Coronavirus genetics, Newcastle disease virus immunology, Newcastle disease virus genetics
- Abstract
Background: In order to prevent the emergence and spread of future variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing vaccines capable of stopping transmission is crucial. The SARS-CoV-2 vaccine NDV-HXP-S can be administered live intranasally (IN) and thus induce protective immunity in the upper respiratory tract. The vaccine is based on Newcastle disease virus (NDV) expressing a stabilised SARS-CoV-2 spike protein. NDV-HXP-S can be produced as influenza virus vaccine at low cost in embryonated chicken eggs., Methods: The NDV-HXP-S vaccine was genetically engineered to match the Omicron variants of concern (VOC) BA.1 and BA.5 and tested as an IN two or three dose vaccination regimen in female mice. Furthermore, female mice intramuscularly (IM) vaccinated with mRNA-lipid nanoparticles (LNPs) were IN boosted with NDV-HXP-S. Systemic humoral immunity, memory T cell responses in the lungs and spleens as well as immunoglobulin A (IgA) responses in distinct mucosal tissues were characterised., Findings: NDV-HXP-S Omicron variant vaccines elicited high mucosal IgA and serum IgG titers against respective SARS-CoV-2 VOC in female mice following IN administration and protected against challenge from matched variants. Additionally, antigen-specific memory B cells and local T cell responses in the lungs were induced. Host immunity against the NDV vector did not interfere with boosting. Intramuscular vaccination with mRNA-LNPs was enhanced by IN NDV-HXP-S boosting resulting in improvement of serum neutralization titers and induction of mucosal immunity., Interpretation: We demonstrate that NDV-HXP-S Omicron variant vaccines utilised for primary immunizations or boosting efficiently elicit humoral and cellular immunity. The described induction of systemic and mucosal immunity has the potential to reduce infection and transmission., Funding: This work was partially funded by the NIAIDCenters of Excellence for Influenza Research and Response (CEIRR) and by the NIAID Collaborative Vaccine Innovation Centers and by institutional funding from the Icahn School of Medicine at Mount Sinai. See under Acknowledgements for details., Competing Interests: Declaration of interests The Icahn School of Medicine at Mount Sinai has filed patent applications entitled “RECOMBINANT NEWCASTLE DISEASE VIRUS EXPRESSING SARS-COV-2 SPIKE PROTEIN AND USES THEREOF” which names P.P., A.G.S, F.K. and W.S. as inventors. Mount Sinai is seeking to commercialise this vaccine; therefore, the institution and its faculty inventors could benefit financially. I.G.D. has co-chaired at the ninth ESWI Influenza conference, which has no competing interest with this work. The M.S. laboratory has received unrelated research funding in sponsored research agreements from 7Hills Pharma, ArgenX N.V., Moderna and Phio Pharmaceuticals, which has no competing interest with this work. F.K. has consulted for Merck, Seqirus, Curevac and Pfizer, and is currently consulting for Pfizer, Third Rock Ventures, GSK and Avimex. The FK laboratory is also collaborating with Pfizer on animal models of SARS-CoV-2. The A.G.-S. laboratory has received research support from GSK, Pfizer, Senhwa Biosciences, Kenall Manufacturing, Blade Therapeutics, Avimex, Johnson & Johnson, Dynavax, 7Hills Pharma, Pharmamar, ImmunityBio, Accurius, Nanocomposix, Hexamer, N-fold LLC, Model Medicines, Atea Pharma, Applied Biological Laboratories and Merck. A.G.S. has consulting agreements for the following companies involving cash and/or stock: Castlevax, Amovir, Vivaldi Biosciences, Contrafect, 7Hills Pharma, Avimex, Pagoda, Accurius, Esperovax, Farmak, Applied Biological Laboratories, Pharmamar, CureLab Oncology, CureLab Veterinary, Synairgen, Paratus and Pfizer. A.G.S. has been an invited speaker in meeting events organised by Seqirus, Janssen, Abbott and Astrazeneca. A.G.S. is inventor on patents and patent applications on the use of antivirals and vaccines for the treatment and prevention of virus infections and cancer, owned by the Icahn School of Medicine at Mount Sinai, New York. Specifically, A.G.S., a member of the faculty of the Icahn School of Medicine at Mount Sinai (Mount Sinai) is an inventor of a novel COVID-19 vaccine currently being investigated in clinical trials. Mount Sinai is advancing the development of this vaccine and related technologies for potential commercial use. Mount Sinai has created CastleVax Inc., a Mount Sinai company, and has licensed the applicable IP to it. Mount Sinai will receive financial compensation from CastleVax Inc. pursuant to that license if vaccine development proceeds and as an owner of the company subject to the sale of its ownership interest in the future. Subject to Mount Sinai receiving such financial consideration, A.G.S. will receive a portion of that consideration pursuant to the terms of the Mount Sinai Intellectual Property Policy. All other authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
50. Time-Dependent Effects of Clinical Interventions on SARS-CoV-2 Immunity in Patients with Lung Cancer.
- Author
-
Mack PC, Hsu CY, Rodilla AM, Gomez JE, Cagan J, Huang Y, Tavolacci S, Valanparambil RM, Rohs N, Brody R, Nichols B, Carreño JM, Bhalla S, Rolfo C, Gerber DE, Moore A, King JC, Ahmed R, Minna JD, Bunn PA Jr, García-Sastre A, Krammer F, Hirsch FR, and Shyr Y
- Abstract
In patients with lung cancer (LC), understanding factors that impact the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-spike antibody (SAb) titers over time is critical, but challenging, due to evolving treatments, infections, vaccinations, and health status. The objective was to develop a time-dependent regression model elucidating individual contributions of factors influencing SAb levels in LC patients using a prospective, longitudinal, multi-institutional cohort study initiated in January 2021. The study evaluated 296 LC patients-median age 69; 55% female; 50% stage IV. Blood samples were collected every three months to measure SAb levels using FDA-approved ELISA. Asymptomatic and unreported infections were documented through measurement of anti-nucleocapsid Ab levels (Meso Scale Discovery). Associations between clinical characteristics and titers were evaluated using a time-dependent linear regression model with a generalized estimating equation (GEE), considering time-independent variables (age, sex, ethnicity, smoking history, histology, and stage) and time-dependent variables (booster vaccinations, SARS-CoV-2 infections, cancer treatment, steroid use, and influenza vaccination). Significant time-dependent effects increasing titer levels were observed for prior SARS-CoV-2 infection ( p < 0.001) and vaccination/boosters ( p < 0.001). Steroid use ( p = 0.043) and chemotherapy ( p = 0.033) reduced titer levels. Influenza vaccination was associated with increased SAb levels ( p < 0.001), independent of SARS-CoV-2 vaccine boosters. Prior smoking significantly decreased titers in females ( p = 0.001). Age showed no association with titers. This GEE-based linear regression model unveiled the nuanced impact of multiple variables on patient anti-spike Ab levels over time. After controlling for the major influences of vaccine and SARS-CoV-2 infections, chemotherapy and steroid use were found to have negatively affected titers. Smoking in females significantly decreased titers. Surprisingly, influenza vaccinations were also significantly associated, likely indirectly, with improved SARS-CoV-2 titers.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.