The importance for manipulating an incorporated scaffold and directing cell behaviors is well appreciated for tissue engineering. Here, we developed newly nano-topographic oxidized silicon nanosponges capable of being various chemical modifications to provide much insight into the fundamental biology of how cells interact with their surrounding environment in vitro. A wet etching technique is exerted to allow us fabricated the silicon nanosponges in a high-throughput manner. Furthermore, various organo-silane chemicals enabled self-assembled on the surfaces by vapor deposition. We have found that Chinese hamster ovary (CHO) cells displayed certain distinguishable morphogenesis, adherent responses, and biochemical properties while cultured on these chemical modified nano-topographic structures in compared with the planar oxidized silicon counterparts, indicating that cell behaviors can be influenced by certain physical characteristic derived from nano-topography in addition to the hydrophobicity of contact surfaces crucial for cell adhesion and spreading. Of particular, there were predominant nano-actin punches and slender protrusions formed while cells were cultured on the nano-topographic structures. This study shed potential applications of these nano-topographic biomaterials for controlling cell development in tissue engineering or basic cell biology research., {"references":["R. Langer and J. P. Vacanti, \"Tissue engineering,\" Science, vol. 260,\nMay. 1993, pp. 920-926.","R. Singhvi, A. Kumar, G. Lopez, G. N. Stephanopoulos, D. I. C. Wang,\nand G. M. Whitesides, \"Engineering cell shape and function,\" Science,\nvol. 264, Apr. 1994, pp. 696-698.","S. K. W. Dertinger, X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides,\n\"Gradients of substrate-bound laminin orient axonal specification of\nneurons,\" Proc. Natl. Acad. Sci. USA, vol. 99, Oct. 2002, pp.\n12542-12547.","J. A. Burdick, A. Khademhosseini, and R. Langer, \"Fabrication of\ngradient hydrogels using a microfluidics/photopolymerization process,\"\nLangmuir, vol. 20, May. 2004, pp. 5153-5156.","K. C. Dee, D. C. Rueger, T. T. Andersen, and R. Bizios, \"Conditions\nwhich promote mineralization at the bone-implant interface: a model in\nvitro study,\" Biomaterials, vol. 17, Jan. 1996, pp. 209-215.","A. Rezania, C. H. Thomas, A. B. Branger, C. M. Waters, and K. E. Healy,\n\"The detachment strength and morphology of bone cells contacting\nmaterials modified with a peptide sequence found within bone sialo\nprotein,\" J. Biomed. Mater. Res., vol. 37, Oct. 1997, pp. 9-19.","J. A. Neff, K. D. Caldwell, and P. A. Tresco, \"A novel method for surface\nmodification to promote cell attachment to hydrophobic substrates,\" J.\nBiomed. Mater. Res., vol. 40, Dec. 1998, pp. 511-519.","E. V. Romanova, S. P. Oxley, S. S. Rubakhin, P. W. Bohn, and J. V.\nSweedler, \"Self-assembled monolayers of alkanethiols on gold modulate\nelectrophysiological parameters and cellular morphology of cultured\nneurons,\" Biomaterials, vol. 27, Mar. 2006, pp. 1665-1669.","D. Pesen and D. B. Haviland, \"Modulation of Cell Adhesion Complexes\nby Surface Protein Patterns,\" Appl. Mater. Interfaces, vol. 1, Jan. 2009,\npp. 543-548.\n[10] L. Chou, J. D. Firth, V. J. Uitto, and D. M. Brunette, \"Substratum surface\ntopography alters cell shape and regulates fibronectin mRNA level,\nmRNA stability, secretion and assembly in human fibroblasts,\" J. Cell\nSci., vol. 108, Apr. 1995, pp. 1563-1573.\n[11] B. G. Keselowsky, D. M. Collard, and A. J. García, \"Surface chemistry\nmodulates focal adhesion composition and signaling through changes in\nintegrin binding,\" Biomaterials, vol. 25, Dec. 2004, pp. 5947-5954.\n[12] M. J. Dalby, S. Childs, S. J. Yarwood, M. O. Riehle, H. J. H. Johnstone, S.\nAffrossman, and A. S. G. Curtis, \"Fibroblast reaction to island\ntopography: changes in cytoskeleton and morphology with time,\"\nBiomaterials, vol. 24, Mar. 2003, pp. 927-935.\n[13] M. J. Dalby, D. Giannaras, M. O. Riehle, N. Gadegaard, S. Affrossman,\nand A. S. G. Curtis, \"Rapid fibroblast adhesion to 27 nm high polymer\ndemixed nano-topography,\" Biomaterials, vol. 25, Jan. 2004, pp. 77-83.\n[14] N. H. Kwon, M. F. Beaux, C. Ebert, L. D. Wang, B. E. Lassiter, Y. H.\nPark, D. N. Mcllroy, C. J. Hovde, and G. A. Bohach, \"Nanowire-based\ndelivery of Escherichia coli O157 shiga toxin 1 A subunit into human and\nbovine cells,\" Nano Lett., vol. 7, Jul. 2007, pp. 2718-2723.\n[15] S. Qi, C. Yi, S. Ji, C. C. Fong, and M. Yang, \" Cell Adhesion and\nSpreading Behavior on Vertically Aligned Silicon Nanowire Arrays,\"\nAppl. Mater. Interfaces, vol. 1, Jan. 2009, pp. 30-34.\n[16] S. P. Low, N. H. Voelcker, L. T. Canham, and K. A. Williams, \"The\nbiocompatibility of porous silicon in tissues of the eye,\" Biomaterials,\nvol. 30, Feb. 2009, pp.2873-2880.\n[17] B. Kobrin, V. Fuentes, S. Dasaraadhi, R. Yi, R. Nowak, and J. Chinn,\n\"An improved vapor-phase deposition technique for molecular coatings\nfor MEMS devices,\" Semicon West 2004.\n[18] B. Kobrin, J. Chinn, R. W. Ashurst, and R. Maboudian, \"Molecular vapor\ndeposition (MVD) for improved SAM coatings,\" Proc. of SPIE, vol.\n5716, Jan. 2005, pp. 152-157.\n[19] K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu,\n\"Fabrication of single-crystalline silicon nanowires by scratching a\nsilicon surface with catalytic metal particles,\" Adv. Funct. Mater., vol. 16,\nFeb. 2006, pp. 387-394.\n[20] C. M. Hsieh, J. Y. Chyan, W. C. Hsu, and J. A. Yeh, \"Fabrication of\nWafer-level Antireflective Structures in Optoelectronic Applications,\" in\nIEEE Optical MEMS, Taiwan, 2007, pp. 185-186.\n[21] J. Y. Chyan, W. C. Hsu, and J. A. Yeh, \"Broadband antireflective poly-Si\nnanosponge for thin film solar cells,\" Opt. Express, vol. 17, Mar. 2009,\npp. 4646-4651.\n[22] T. L. Shen, A. Y. Park, A. Alcaraz, X. Peng, I. Jang, P. Koni, R. A. Flavell,\nH. Gu, and J. L. Guan, \"Conditional knockout of focal adhesion kinase in\nendothelial cells reveals its role in angiogenesis and vascular development\nin late embryogenesis,\" J Cell Biol., vol. 169, Jun. 2005, pp. 941-952.\n[23] R. N. Wenzel, \"Resistance of solid surfaces to wetting by water,\" Ind.\nEng. Chem., vol. 28, Apr. 1936, pp. 988-994.\n[24] A. B. D. Cassie and S. Baxter, \"Wettability of porous surfaces,\" Trans.\nFaraday Soc., vol. 40, Jul. 1944, pp. 546-550.\n[25] Z. H. Yang, C. Y. Chiu, J. T. Yang, and J. A. Yeh, \"Investigation and\napplication of an ultrahydrophobic hybrid-structured surface with\nanti-sticking character,\" J. Micromech. Microeng., vol. 19, Jul. 2009, pp.\n085022.\n[26] R. D. Mullins, J. A. Heuser, and T. D. Pollard, \"The interaction of Arp2/3\ncomplex with actin: Nucleation, high affinity pointed end capping, and\nformation of branching networks of filaments,\" Proc. Natl. Acad. Sci.\nUSA, vol. 95, May. 1998, pp. 6181-6186.\n[27] L. Blanchoin, K. J. Amann, H. N. Higgs, J. B. Marchand, D. A. Kaiser, T.\nD. Pollard, \"Direct observation of dendritic actin filament networks\nnucleated by Arp2/3 complex and WASP/Scar proteins,\" Nature, vol.\n404, Apr. 2000, pp. 1007-1077.\n[28] M. A. Schwartz, M. D. Schaller, and M. H. Ginsberg, \"Integrins:\nemerging paradigms of signal transduction,\" Annu. Rev. Cell Dev. Biol.,\nvol. 11, Nov. 1995, pp. 549-599.\n[29] L. A. Cary and J. L. Guan, \"Focal adhesion kinase in integrin-mediated\nsignaling,\" Front Biosci., vol. 4, Jan. 1999, pp. D102-113.\n[30] D. D. Schlaepfer, C. R. Hauck, and D. J. Sieg, \"Signaling from focal\nadhesion kinase,\" Prog Biophys. Mol. Biol., vol. 71, Mar. 1999, pp.\n435-478.\n[31] P. Y. Chan, S. B. Kanner, G. Whitney, and A. Aruffo, \"A\ntransmembrane-anchored chimeric focal adhesion kinase is constitutively\nactivated and phosphorylated at tyrosine residues identical to\npp125FAK,\" J. Biol. Chem., vol. 269, Aug. 1994, pp. 20567-20574.\n[32] B. S. Cobb, M. D. Schaller, T. H. Leu, and J. T. Parsons, \"Stable\nassociation of pp60src and pp59fyn with the focal adhesion-associated\nprotein tyrosine kinase, pp125FAK,\" Mol. Cell Biol., vol. 14, Jan. 1994,\npp. 147-155.\n[33] M. D. Schaller, J. D. Hildebrand, J. D. Shannon, J. W. Fox, R. R. Vines,\nand J. T. Parsons, \"Autophosphorylation of the focal adhesion kinase,\npp125FAK, directs SH2-dependent binding of pp60src,\" Mol. Cell Biol.,\nvol. 14, Aug. 1994, pp. 1680-1688.\n[34] Z. Xing, H. C. Chen, J. K. Nowlen, S. J. Taylor, D. Shalloway, and J. L.\nGuan, \"Direct interaction of v-Src with the focal adhesion kinase\nmediated by the Src SH2 domain,\" Mol. Cell Biol., vol. 5, Apr. 1994, pp.\n413-421.\n[35] H. C. Chen and J. L. Guan, \"Association of focal adhesion kinase with its\npotential substrate phosphatidylinositol 3-kinase,\" Proc. Natl. Acad. Sci.\nUSA, vol. 91, Oct. 1994, pp. 10148-10152.\n[36] X. Zhang, A. Chattopadhyay, Q. S. Ji, J. D. Owen, P. J. Ruest, G.\nCarpenter, and S. K. Hanks, \"Focal adhesion kinase promotes\nphospholipase C-γ1 activity,\" Proc. Natl. Acad. Sci. USA, vol. 96, Aug.\n1999, pp. 9021-9026.\n[37] D. C. Han and J. L. Guan, \"Association of focal adhesion kinase with\nGrb7 and its role in cell migration,\" J. Biol. Chem., vol. 274, Aug. 1999,\npp. 24425-24430.\n[38] P. van der Valk, A. W. J. van Pelt, H. J. Busscher, H. P. de Jong, Ch. R. H.\nWildevuur, and J. Arends, \"Interaction of fibroblasts and polymer\nsurfaces: relationship between surface free energy and fibroblast\nspreading,\" J. Biomed. Mater. Res., vol. 17, Sep. 1983, pp. 807-817.\n[39] K. Webb, V. Hlady, and P. A. Tresco,\" Relative importance of surface\nwettability and charged functional groups on NIH 3T3 fibroblast\nattachment, spreading, and cytoskeleton organization,\" J. Biomed. Mater.\nRes., vol. 41, Sep. 1998, pp. 422-430.\n[40] Y. Arima and H. Iwata, \"Effect of wettability and surface functional\ngroups on protein adsorption and cell adhesion using well-defined mixed\nself-assembled monolayers,\" Biomaterials, vol. 28, Jul. 2007, pp.\n3074-3082.\n[41] R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F.\nNealey, \"Effects of synthetic micro- and nano-structured surfaces on cell\nbehavior, \"Biomaterials, vol. 20, Mar. 1999, pp. 573-588.\n[42] B. A. Bromberek, P. A. J. Enever, D. I. Shreiber, M. D. Caldwell, and R.\nT. Tranquillo, \"Macrophages influence a competition of contact guidance\nand chemotaxis for fibroblast alignment in a fibrin gel coculture assay,\"\nExp. Cell Res., vol. 275, May. 2002, pp. 230-242.\n[43] A. I. Teixeira, G. A. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey,\n\"Epithelial contact guidance on well-defined micro- and nanostructured\nsubstrates,\" J. Cell Sci., vol. 116, May. 2003, pp. 1881-1892.\n[44] E. T. den Braber, J. E. de Ruijter, H. T. J. Smits, L. A. Ginsel, A. F. von\nRecum, and J. A. Jansen, \"Effect of parallel surface microgrooves and\nsurface energy on cell growth,\" J. Biomed. Mater. Res., vol. 29, Apr.\n1995, pp. 511-518.\n[45] G. A. Dunn and J. P. Health, \"A new hypothesis of contact guidance in\ntissue cells,\" Exp. Cell Res., vol. 101, Aug. 1976, pp. 1-14.\n[46] P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W.\nWilkinson, \"Topographical control of cell behaviour. I. Simple step\ncues,\" Development, vol. 99, Mar. 1987, pp. 439-448."]}