Back to Search Start Over

A pilot study for the prediction of liver function related scores using breath biomarkers and machine learning

Authors :
Rakesh Kumar Patnaik
Yu-Chen Lin
Ashish Agarwal
Ming-Chih Ho
J. Andrew Yeh
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-14 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract Volatile organic compounds (VOCs) present in exhaled breath can help in analysing biochemical processes in the human body. Liver diseases can be traced using VOCs as biomarkers for physiological and pathophysiological conditions. In this work, we propose non-invasive and quick breath monitoring approach for early detection and progress monitoring of liver diseases using Isoprene, Limonene, and Dimethyl sulphide (DMS) as potential biomarkers. A pilot study is performed to design a dataset that includes the biomarkers concentration analysed from the breath sample before and after study subjects performed an exercise. A machine learning approach is applied for the prediction of scores for liver function diagnosis. Four regression methods are performed to predict the clinical scores using breath biomarkers data as features set by the machine learning techniques. A significant difference was observed for isoprene concentration (p

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.32e6099400924321b05bb60125d32533
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-05808-5