1. Cone-guided fast ignition with no imposed magnetic fields
- Author
-
Strozzi D., Tabak M., Larson D., Marinak M., Key M., Divol L., Kemp A., Bellei C., and Shay H.
- Subjects
Physics ,QC1-999 - Abstract
Simulations are presented of ignition-scale fast ignition targets with the integrated Zuma-Hydra PIC-hydrodynamic capability. We consider a spherical DT fuel assembly with a carbon cone, and an artificially-collimated fast electron source. We study the role of E and B fields and the fast electron energy spectrum. For mono-energetic 1.5 MeV fast electrons, without E and B fields, ignition can be achieved with fast electron energy Efig = 30kJ. This is 3.5× the minimal deposited ignition energy of 8.7 kJ for our fuel density of 450 g/cm3. Including E and B fields with the resistive Ohm's law E = ηJb gives Efig = 20kJ, while using the full Ohm's law gives Efig > 40 kJ. This is due to magnetic self-guiding in the former case, and ∇n ×∇T magnetic fields in the latter. Using a realistic, quasi two-temperature energy spectrum derived from PIC laser-plasma simulations increases Efig to (102, 81, 162) kJ for (no E/B, E = ηJb, full Ohm's law). Such electrons are too energetic to stop in the optimal hot spot depth.
- Published
- 2013
- Full Text
- View/download PDF