Back to Search Start Over

Cone-Guided Fast Ignition with no Imposed Magnetic Fields

Authors :
Strozzi, D. J.
Tabak, M.
Larson, D. J.
Marinak, M. M.
Key, M. H.
Divol, L.
Kemp, A. J.
Bellei, C.
Shay, H. D.
Publication Year :
2011

Abstract

Simulations of ignition-scale fast ignition targets have been performed with the new integrated Zuma-Hydra PIC-hydrodynamic capability. We consider an idealized spherical DT fuel assembly with a carbon cone, and an artificially-collimated fast electron source. We study the role of E and B fields and the fast electron energy spectrum. For mono-energetic 1.5 MeV fast electrons, without E and B fields, the energy needed for ignition is E_f^{ig} = 30 kJ. This is about 3.5x the minimal deposited ignition energy of 8.7 kJ for our fuel density of 450 g/cm^3. Including E and B fields with the resistive Ohm's law E = \eta J_b gives E_f^{ig} = 20 kJ, while using the full Ohm's law gives E_f^{ig} > 40 kJ. This is due to magnetic self-guiding in the former case, and \nabla n \times \nabla T magnetic fields in the latter. Using a realistic, quasi two-temperature energy spectrum derived from PIC laser-plasma simulations increases E_f^{ig} to (102, 81, 162) kJ for (no E/B, E = \eta J_b, full Ohm's law). This stems from the electrons being too energetic to fully stop in the optimal hot spot depth.<br />Comment: Minor revisions in response to referee comments

Subjects

Subjects :
Physics - Plasma Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1111.5089
Document Type :
Working Paper