19 results on '"Pauline Macheboeuf"'
Search Results
2. The inherent flexibility of type I non-ribosomal peptide synthetase multienzymes drives their catalytic activities
- Author
-
Sarah Bonhomme, Andréa Dessen, and Pauline Macheboeuf
- Subjects
non-ribosomal peptide synthetases ,flexibility ,supramodular architecture ,Biology (General) ,QH301-705.5 - Abstract
Non-ribosomal peptide synthetases (NRPSs) are multienzymes that produce complex natural metabolites with many applications in medicine and agriculture. They are composed of numerous catalytic domains that elongate and chemically modify amino acid substrates or derivatives and of non-catalytic carrier protein domains that can tether and shuttle the growing products to the different catalytic domains. The intrinsic flexibility of NRPSs permits conformational rearrangements that are required to allow interactions between catalytic and carrier protein domains. Their large size coupled to this flexibility renders these multi-domain proteins very challenging for structural characterization. Here, we summarize recent studies that offer structural views of multi-domain NRPSs in various catalytically relevant conformations, thus providing an increased comprehension of their catalytic cycle. A better structural understanding of these multienzymes provides novel perspectives for their re-engineering to synthesize new bioactive metabolites.
- Published
- 2021
- Full Text
- View/download PDF
3. A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition.
- Author
-
David Lutje Hulsik, Ying-ying Liu, Nika M Strokappe, Simone Battella, Mohamed El Khattabi, Laura E McCoy, Charles Sabin, Andreas Hinz, Miriam Hock, Pauline Macheboeuf, Alexandre M J J Bonvin, Johannes P M Langedijk, David Davis, Anna Forsman Quigley, Marlén M I Aasa-Chapman, Michael S Seaman, Alejandra Ramos, Pascal Poignard, Adrien Favier, Jean-Pierre Simorre, Robin A Weiss, C Theo Verrips, Winfried Weissenhorn, and Lucy Rutten
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Biology (General) ,QH301-705.5 - Abstract
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10.
- Published
- 2013
- Full Text
- View/download PDF
4. Architecture of a PKS-NRPS hybrid megaenzyme involved in the biosynthesis of the genotoxin colibactin
- Author
-
Sarah Bonhomme, Carlos Contreras-Martel, Andréa Dessen, Pauline Macheboeuf, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
- Subjects
MESH: Polyketide Synthases ,Structural Biology ,MESH: Escherichia coli ,[SDV]Life Sciences [q-bio] ,Non-ribosomal peptide synthetase ,MESH: X-Ray Diffraction ,Colibactin ,Polyketide synthase ,Molecular Biology ,MESH: Scattering, Small Angle - Abstract
International audience; The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.
- Published
- 2023
- Full Text
- View/download PDF
5. MagC is a NplC/P60‐like member of the $\alpha$‐2‐macroglobulin Mag complex of $Pseudomonas\ aeruginosa$ that interacts with peptidoglycan
- Author
-
Ina Attrée, Andréa Dessen, Daniel M. Trindade, Carlos Contreras-Martel, Pauline Macheboeuf, Samira Zouhir, Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Pathogenèse bactérienne et réponses cellulaires (PBRC), Centre National de la Recherche Scientifique (CNRS)-Biologie du Cancer et de l'Infection (BCI ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut National de la Santé et de la Recherche Médicale (INSERM), ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017), Groupe Pathogenèse Bactérienne et Réponses Cellulaires / Bacterial Pathogenesis and Cellular Responses Group (IBS-PBRC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Operon ,medicine.medical_treatment ,[SDV]Life Sciences [q-bio] ,Biophysics ,Peptidoglycan ,Calorimetry ,medicine.disease_cause ,Crystallography, X-Ray ,Biochemistry ,03 medical and health sciences ,chemistry.chemical_compound ,Bacterial Proteins ,Structural Biology ,Genetics ,medicine ,Amino Acid Sequence ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,Protease ,Sequence Homology, Amino Acid ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Pseudomonas aeruginosa ,030302 biochemistry & molecular biology ,Isothermal titration calorimetry ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Cell Biology ,Pregnancy-Associated alpha 2-Macroglobulins ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Macroglobulin ,chemistry ,Macroglobulins ,Ultracentrifugation ,Function (biology) ,Protein Binding - Abstract
International audience; Bacterial $\alpha$-2 macroglobulins (A2Ms) structurally resemble the large spectrum protease inhibitors of the eukaryotic immune system. In $Pseudomonas\ aeruginosa$, MagD acts as an A2M and is expressed within a six-gene operon encoding the MagA-F proteins. In this work, we employ isothermal calorimetry (ITC), analytical ultracentrifugation (AUC), and X-ray crystallography to investigate the function of MagC and show that MagC associates with the macroglobulin complex and with the peptidoglycan (PG). However, the catalytic residues of MagC display an inactive conformation that could suggest that it binds to PG but does not degrade it. We hypothesize that MagC could serve as an anchor between the MagD macroglobulin and the PG and could provide stabilization and/or regulation for the entire complex.
- Published
- 2021
- Full Text
- View/download PDF
6. The inherent flexibility of type I non-ribosomal peptide synthetase multienzymes drives their catalytic activities
- Author
-
Pauline Macheboeuf, Sarah Bonhomme, Andréa Dessen, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
- Subjects
QH301-705.5 ,Immunology ,Peptide Synthetases ,Peptide ,Computational biology ,Review ,Biology ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Catalysis ,03 medical and health sciences ,Structure-Activity Relationship ,Catalytic Domain ,supramodular architecture ,Biology (General) ,Peptide Synthases ,Review Articles ,030304 developmental biology ,chemistry.chemical_classification ,Flexibility (engineering) ,0303 health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,non-ribosomal peptide synthetases ,010405 organic chemistry ,General Neuroscience ,Ribosomal RNA ,0104 chemical sciences ,3. Good health ,Amino acid ,flexibility ,chemistry ,Catalytic cycle ,Carrier protein - Abstract
International audience; Non-ribosomal peptide synthetases (NRPSs) are multienzymes that produce complex natural metabolites with many applications in medicine and agriculture. They are composed of numerous catalytic domains that elongate and chemically modify amino acid substrates or derivatives and of non-catalytic carrier protein domains that can tether and shuttle the growing products to the different catalytic domains. The intrinsic flexibility of NRPSs permits conformational rearrangements that are required to allow interactions between catalytic and carrier protein domains. Their large size coupled to this flexibility renders these multi-domain proteins very challenging for structural characterization. Here, we summarize recent studies that offer structural views of multi-domain NRPSs in various catalytically relevant conformations, thus providing an increased comprehension of their catalytic cycle. A better structural understanding of these multienzymes provides novel perspectives for their re-engineering to synthesize new bioactive metabolites.
- Published
- 2021
- Full Text
- View/download PDF
7. Bacterial secretins: Mechanisms of assembly and membrane targeting
- Author
-
Yuri Rafael de Oliveira Silva, Carlos Contreras-Martel, Andréa Dessen, Pauline Macheboeuf, Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
- Subjects
Models, Molecular ,Cryo-electron microscopy ,protein-protein interactions ,Virulence ,Reviews ,Type IV pilus system ,Biochemistry ,secretin ,Pilus ,Protein–protein interaction ,Bacterial genetics ,03 medical and health sciences ,Secretion ,Types II and III secretion systems ,Molecular Biology ,030304 developmental biology ,0303 health sciences ,Bacteria ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Chemistry ,Effector ,bacterial virulence ,030302 biochemistry & molecular biology ,Cryoelectron Microscopy ,Cell biology ,Cytoplasm ,toxin secretion ,Bacterial Outer Membrane Proteins - Abstract
International audience; Secretion systems are employed by bacteria to transport macromolecules across membranes without compromising their integrities. Processes including virulence, colonization, and motility are highly dependent on the secretion of effector molecules toward the immediate cellular environment, and in some cases, into the host cytoplasm. In Type II and Type III secretion systems, as well as in Type IV pili, homomultimeric complexes known as secretins form large pores in the outer bacterial membrane, and the localization and assembly of such 1 MDa molecules often relies on pilotins or accessory proteins. Significant progress has been made toward understanding details of interactions between secretins and their partner proteins using approaches ranging from bacterial genetics to cryo electron microscopy. This review provides an overview of the mode of action of pilotins and accessory proteins for T2SS, T3SS, and T4PS secretins, highlighting recent near-atomic resolution cryo-EM secretin complex structures and underlining the importance of these interactions for secretin functionality.
- Published
- 2020
- Full Text
- View/download PDF
8. Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy
- Author
-
Virginia Guillon, C.M. Roome, Jacques-Philippe Colletier, Gabriela Nass Kovacs, Pauline Macheboeuf, Franck Fieschi, Marco Cammarata, Michel Thépaut, Michel Sliwa, Nicolas Coquelle, Eugenio de la Mora, Stefan Jakobs, Lucas Martinez Uriarte, Lutz Foucar, Shigeki Owada, Martin Byrdin, Robert L. Shoeman, Thomas R. M. Barends, Dominique Bourgeois, Koji Motomura, R. Bruce Doak, Kensuke Tono, Martin Weik, Virgile Adam, Martin J. Field, Makina Yabashi, Karol Nass, Ilme Schlichting, Joyce Woodhouse, Tadashi Togashi, Yasumasa Joti, Mikolaj Feliks, Cyril Ruckebusch, Giorgio Schirò, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Max-Planck-Institut für Medizinische Forschung, Max-Planck-Gesellschaft, Groupe Dynamique et Cinétique des processus moléculaires (IBS-DYNAMOP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), DS/LSS Large Scale Structures group, Institut Laue-Langevin (ILL), ILL-ILL, Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille Institut (CLIL), Department of Chemistry, University of Southern California, University of Southern California (USC), Groupe modélisation et chimie théorique (MCT ), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Groupe Membrane et pathogènes (IBS-MP), Department of NanoBiophotonics [Göttingen], Max Planck Institute for Biophysical Chemistry (MPI-BPC), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Japan Synchrotron Radiation Research Institute [Hyogo] (JASRI), Groupe Pathogénie Bactérienne (IBS-PATBAC), Institute of Multidisciplinary Research for Advanced Materials, Tohoku University [Sendai], RIKEN SPring-8 Center [Hyogo] (RIKEN RSC), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Conformational change ,Science ,General Physics and Astronomy ,Protonation ,010402 general chemistry ,Photochemistry ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,03 medical and health sciences ,Ultrafast laser spectroscopy ,Spectroscopy ,lcsh:Science ,X-ray crystallography ,[PHYS]Physics [physics] ,Multidisciplinary ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Chemistry ,Nanocrystallography ,General Chemistry ,Chromophore ,Fluorescence ,0104 chemical sciences ,3. Good health ,Time resolved crystallography ,Photoexcitation ,030104 developmental biology ,lcsh:Q ,Structural biology - Abstract
Reversibly switchable fluorescent proteins (RSFPs) serve as markers in advanced fluorescence imaging. Photoswitching from a non-fluorescent off-state to a fluorescent on-state involves trans-to-cis chromophore isomerization and proton transfer. Whereas excited-state events on the ps timescale have been structurally characterized, conformational changes on slower timescales remain elusive. Here we describe the off-to-on photoswitching mechanism in the RSFP rsEGFP2 by using a combination of time-resolved serial crystallography at an X-ray free-electron laser and ns-resolved pump–probe UV-visible spectroscopy. Ten ns after photoexcitation, the crystal structure features a chromophore that isomerized from trans to cis but the surrounding pocket features conformational differences compared to the final on-state. Spectroscopy identifies the chromophore in this ground-state photo-intermediate as being protonated. Deprotonation then occurs on the μs timescale and correlates with a conformational change of the conserved neighbouring histidine. Together with a previous excited-state study, our data allow establishing a detailed mechanism of off-to-on photoswitching in rsEGFP2., rsEGFP2 is a reversibly photoswitchable fluorescent protein used in super-resolution light microscopy. Here the authors present the structure of an rsEGFP2 ground-state intermediate after excited state-decay that was obtained by nanosecond time-resolved serial femtosecond crystallography at an X-ray free electron laser, and time-resolved absorption spectroscopy measurements complement their structural analysis.
- Published
- 2020
- Full Text
- View/download PDF
9. CC2D1B Coordinates ESCRT-III Activity during the Mitotic Reformation of the Nuclear Envelope
- Author
-
Juan Martin-Serrano, Leandro N. Ventimiglia, Jeremy G. Carlton, Ian M. Parnham, Nolwenn Miguet, Nicolas Martinelli, Yolanda Olmos, Pauline Macheboeuf, Anna Caballe, Miguel Angel Cuesta-Geijo, Winfried Weissenhorn, King's College London, Department of Infectious Diseases, Division of Immunology, Infection and Inflammatory Diseases, School of Medicine, Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Division of Cancer Studies, King's College London, Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Spastin ,Endosome ,Mitosis ,macromolecular substances ,Biology ,General Biochemistry, Genetics and Molecular Biology ,ESCRT ,Cell Line ,microtubules ,03 medical and health sciences ,Mice ,Microtubule ,medicine ,Animals ,Humans ,Nuclear membrane ,Molecular Biology ,Endosomal Sorting Complexes Required for Transport ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Endoplasmic reticulum ,Cell Biology ,nuclear envelope ,HCT116 Cells ,Chromatin ,Cell biology ,Spindle apparatus ,Repressor Proteins ,030104 developmental biology ,medicine.anatomical_structure ,Developmental Biology ,HeLa Cells - Abstract
International audience; The coordinated reformation of the nuclear envelope (NE) after mitosis re-establishes the structural integrity and the functionality of the nuclear compartment. The endosomal sorting complex required for transport (ESCRT) machinery, a membrane remodeling pathway that is highly conserved in eukaryotes, has been recently involved in NE resealing by mediating the annular fusion of the nuclear membrane (NM). We show here that CC2D1B, a regulator of ESCRT polymerization, is required to re-establish the nuclear compartmentalization by coordinating endoplasmic reticulum (ER) membrane deposition around chromatin disks with ESCRT-III recruitment to the reforming NE. Accordingly, CC2D1B determines the spatiotemporal distribution of the CHMP7-ESCRT-III axis during NE reformation. Crucially, in CC2D1B-depleted cells, ESCRT activity is uncoupled from Spastin-mediated severing of spindle microtubules, resulting in persisting microtubules that compromise nuclear morphology. Therefore, we reveal CC2D1B as an essential regulatory factor that licenses the formation of ESCRT-III polymers to ensure the orderly reformation of the NE.
- Published
- 2018
- Full Text
- View/download PDF
10. Human viperin catalyzes the modification of GPP and FPP potentially affecting cholesterol synthesis
- Author
-
Patricia Amara, Elena A. Andreeva, Winfried Weissenhorn, Pauline Macheboeuf, Yvain Nicolet, Pavel Mikulecky, Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
0301 basic medicine ,Models, Molecular ,Oxidoreductases Acting on CH-CH Group Donors ,Biophysics ,Farnesyl pyrophosphate ,Biochemistry ,Substrate Specificity ,03 medical and health sciences ,chemistry.chemical_compound ,Polyisoprenyl Phosphates ,Structural Biology ,Viperin ,Genetics ,Humans ,radical SAM ,Molecular Biology ,Lipid raft ,innate immunity ,Virus Release ,chemistry.chemical_classification ,030102 biochemistry & molecular biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Cholesterol ,Geranyl pyrophosphate ,Proteins ,Cell Biology ,Molecular Docking Simulation ,030104 developmental biology ,Enzyme ,chemistry ,Biocatalysis ,antiviral activity ,lipids (amino acids, peptides, and proteins) ,Mevalonate pathway ,Radical SAM ,Sesquiterpenes - Abstract
International audience; Viperin is a radical SAM enzyme that possesses antiviral properties against a broad range of enveloped viruses. Here we describe the activity of human viperin with two molecules of the mevalonate pathway, geranyl pyrophosphate and farnesyl pyrophosphate, involved in cholesterol biosynthesis. We postulate that the radical modification of these two molecules by viperin might lead to defects in cholesterol synthesis, thereby affecting the composition of lipid rafts and subsequent enveloped virus budding. This article is protected by copyright. All rights reserved.
- Published
- 2018
- Full Text
- View/download PDF
11. Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins
- Author
-
Tom Brown, André Luxen, Pauline Macheboeuf, Christopher J. Schofield, Andréa Dessen, Astrid Zervosen, Delphine S Fischer, and Bernard Joris
- Subjects
Cefotaxime ,Penicillin binding proteins ,medicine.drug_class ,Antibiotics ,Microbial Sensitivity Tests ,medicine.disease_cause ,Crystallography, X-Ray ,Peptides, Cyclic ,Bacterial cell structure ,Lactivicin ,Drug Resistance, Bacterial ,medicine ,polycyclic compounds ,Penicillin-Binding Proteins ,Molecular Biology ,biology ,Chemistry ,Cycloserine ,Pathogenic bacteria ,Cell Biology ,biochemical phenomena, metabolism, and nutrition ,biology.organism_classification ,Streptococcus pneumoniae ,Biochemistry ,Peptides ,Bacteria ,medicine.drug ,Protein Binding - Abstract
Beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved efficient antibiotic resistance mechanisms that, in Gram-positive bacteria, include mutations to PBPs that enable them to avoid beta-lactam inhibition. Lactivicin (LTV; 1) contains separate cycloserine and gamma-lactone rings and is the only known natural PBP inhibitor that does not contain a beta-lactam. Here we show that LTV and a more potent analog, phenoxyacetyl-LTV (PLTV; 2), are active against clinically isolated, penicillin-resistant Streptococcus pneumoniae strains. Crystallographic analyses of S. pneumoniae PBP1b reveal that LTV and PLTV inhibition involves opening of both monocyclic cycloserine and gamma-lactone rings. In PBP1b complexes, the ring-derived atoms from LTV and PLTV show a notable structural convergence with those derived from a complexed cephalosporin (cefotaxime; 3). The structures imply that derivatives of LTV will be useful in the search for new antibiotics with activity against beta-lactam-resistant bacteria.
- Published
- 2016
- Full Text
- View/download PDF
12. Streptococcal M1 protein constructs a pathological host fibrinogen network
- Author
-
Annelies S. Zinkernagel, John E. Johnson, Pauline Macheboeuf, Partho Ghosh, Cosmo Z. Buffalo, Jason N. Cole, Victor Nizet, and Chi-yu Fu
- Subjects
Models, Molecular ,Protein Conformation ,Streptococcus pyogenes ,Virulence Factors ,Inflammation ,Plasma protein binding ,Fibrinogen ,Crystallography, X-Ray ,Virulence factor ,Fibrin ,Article ,Neutrophil Activation ,Microbiology ,03 medical and health sciences ,Protein structure ,Bacterial Proteins ,medicine ,Humans ,Amino Acid Sequence ,Cell adhesion ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,Binding Sites ,biology ,Virulence ,030302 biochemistry & molecular biology ,Toxic shock syndrome ,medicine.disease ,Shock, Septic ,biology.protein ,medicine.symptom ,medicine.drug ,Protein Binding - Abstract
M1 protein, a major virulence factor of the leading invasive strain of group A Streptococcus, is sufficient to induce toxic-shock-like vascular leakage and tissue injury. These events are triggered by the formation of a complex between M1 and fibrinogen that, unlike M1 or fibrinogen alone, leads to neutrophil activation. Here we provide a structural explanation for the pathological properties of the complex formed between streptococcal M1 and human fibrinogen. A conformationally dynamic coiled-coil dimer of M1 was found to organize four fibrinogen molecules into a specific cross-like pattern. This pattern supported the construction of a supramolecular network that was required for neutrophil activation but was distinct from a fibrin clot. Disruption of this network into other supramolecular assemblies was not tolerated. These results have bearing on the pathophysiology of streptococcal toxic shock.
- Published
- 2011
13. Coiled-Coil Irregularities and Instabilities in Group A Streptococcus M1 Are Required for Virulence
- Author
-
Annelies S. Zinkernagel, Madeleine W. Cunningham, Victor Nizet, Partho Ghosh, Pauline Macheboeuf, and Case W. McNamara
- Subjects
Models, Molecular ,Repetitive Sequences, Amino Acid ,Protein Conformation ,Streptococcus pyogenes ,Molecular Sequence Data ,Virulence ,Cross Reactions ,Biology ,Crystallography, X-Ray ,medicine.disease_cause ,Protein Structure, Secondary ,Article ,Microbiology ,Proinflammatory cytokine ,Mice ,Protein structure ,Streptococcal Infections ,medicine ,Animals ,Humans ,Amino Acid Sequence ,Peptide sequence ,Coiled coil ,Antigens, Bacterial ,Multidisciplinary ,Circular Dichroism ,Fibrinogen ,Fibrinogen binding ,Antibodies, Bacterial ,Tropomyosin ,Amino Acid Substitution ,Mutant Proteins ,Carrier Proteins ,Dimerization ,Bacterial Outer Membrane Proteins - Abstract
Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the ∼3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.
- Published
- 2008
- Full Text
- View/download PDF
14. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly
- Author
-
Elisabetta Boeri-Erba, Yuanfei Wu, Grégory Effantin, Pauline Macheboeuf, Heinrich G. Göttlinger, Winfried Weissenhorn, Patricia Renesto, Christophe Caillat, Andrew A. McCarthy, Institut de biologie structurale [1992-2019] (IBS - UMR 5075 [1992-2019]), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School [Worcester] (UMASS), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Thérapeutique Recombinante Expérimentale [?-2015] (TIMC-TheREx [?-2015]), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 [2011-2015] (TIMC [2011-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-IMAG-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-IMAG-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), Institut de biologie structurale (IBS - UMR 5075 ), European Molecular Biology Laboratory [Grenoble] (EMBL), Thérapeutique Recombinante Expérimentale (TIMC-IMAG-TheREx), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 (TIMC-IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Models, Molecular ,Protein Conformation ,General Physics and Astronomy ,Protomer ,macromolecular substances ,Biology ,General Biochemistry, Genetics and Molecular Biology ,ESCRT ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Protein structure ,Adenosine Triphosphate ,ATP hydrolysis ,Binding site ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,Vacuolar protein sorting ,0303 health sciences ,Multidisciplinary ,Binding Sites ,Endosomal Sorting Complexes Required for Transport ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,General Chemistry ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,chemistry ,Biochemistry ,Sulfolobaceae ,Mutation ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Biophysics ,HIV-1 ,ADP binding ,Gene Expression Regulation, Archaeal ,Adenosine triphosphate ,030217 neurology & neurosurgery - Abstract
The vacuolar protein sorting 4 AAA–ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly., Vps4 is a AAA+ family protein involved in the disassembly of ESCRT-III polymers during membrane fission events such as occur during HIV budding. Here the authors propose a structure-based model of how the conformational flexibility of Vps4 can be translated into mechanical forces to disassemble ESCRT-III during membrane fission.
- Published
- 2015
- Full Text
- View/download PDF
15. Penicillin Binding Proteins: key players in bacterial cell cycle and drug resistance processes
- Author
-
Carlos Contreras-Martel, Otto Dideberg, Andréa Dessen, Pauline Macheboeuf, and Viviana Job
- Subjects
Penicillin binding proteins ,Bacteria ,Cell division ,Mechanism (biology) ,Cell growth ,Cell Cycle ,Genomics ,Computational biology ,Cell cycle ,Biology ,Microbiology ,beta-Lactam Resistance ,Bacterial cell structure ,chemistry.chemical_compound ,Infectious Diseases ,Bacterial Proteins ,chemistry ,Biochemistry ,Penicillin-Binding Proteins ,Peptidoglycan - Abstract
Bacterial cell division and daughter cell formation are complex mechanisms whose details are orchestrated by at least a dozen different proteins. Penicillin-binding proteins (PBPs), membrane-associated macromolecules which play key roles in the cell wall synthesis process, have been exploited for over 70 years as the targets of the highly successful beta-lactam antibiotics. The increasing incidence of beta-lactam resistant microorganisms, coupled to progress made in genomics, genetics and immunofluorescence microscopy techniques, have encouraged the intensive study of PBPs from a variety of bacterial species. In addition, the recent publication of high-resolution structures of PBPs from pathogenic organisms have shed light on the complex intertwining of drug resistance and cell division processes. In this review, we discuss structural, functional and biological features of such enzymes which, albeit having initially been identified several decades ago, are now being aggressively pursued as highly attractive targets for the development of novel antibiotherapies.
- Published
- 2006
- Full Text
- View/download PDF
16. Active site restructuring regulates ligand recognition in class A penicillin-binding proteins
- Author
-
Thierry Vernet, Otto Dideberg, Andréa Dessen, Anne Marie Di Guilmi, Pauline Macheboeuf, and Viviana Job
- Subjects
Penicillin binding proteins ,Cell division ,Mutation, Missense ,Plasma protein binding ,Biology ,Crystallography, X-Ray ,Ligands ,beta-Lactams ,Peptidoglycan biosynthetic process ,beta-Lactam Resistance ,chemistry.chemical_compound ,Protein structure ,polycyclic compounds ,Penicillin-Binding Proteins ,Amino Acid Sequence ,Binding site ,Peptide sequence ,Binding Sites ,Multidisciplinary ,Molecular Structure ,Biological Sciences ,Protein Structure, Tertiary ,Streptococcus pneumoniae ,chemistry ,Biochemistry ,Peptidoglycan ,Sequence Alignment ,Protein Binding - Abstract
Bacterial cell division is a complex, multimolecular process that requires biosynthesis of new peptidoglycan by penicillin-binding proteins (PBPs) during cell wall elongation and septum formation steps. Streptococcus pneumoniae has three bifunctional (class A) PBPs that catalyze both polymerization of glycan chains (glycosyltransfer) and cross-linking of pentapeptidic bridges (transpeptidation) during the peptidoglycan biosynthetic process. In addition to playing important roles in cell division, PBPs are also the targets for β-lactam antibiotics and thus play key roles in drug-resistance mechanisms. The crystal structure of a soluble form of pneumococcal PBP1b (PBP1b * ) has been solved to 1.9 Å, thus providing previously undescribed structural information regarding a class A PBP from any organism. PBP1b * is a three-domain molecule harboring a short peptide from the glycosyltransferase domain bound to an interdomain linker region, the transpeptidase domain, and a C-terminal region. The structure of PBP1b * complexed with β-lactam antibiotics reveals that ligand recognition requires a conformational modification involving conserved elements within the cleft. The open and closed structures of PBP1b * suggest how class A PBPs may become activated as novel peptidoglycan synthesis becomes necessary during the cell division process. In addition, this structure provides an initial framework for the understanding of the role of class A PBPs in the development of antibiotic resistance.
- Published
- 2005
- Full Text
- View/download PDF
17. Bases structurales du syndrome du choc toxique streptococcique
- Author
-
Hilke Plassmann, Pauline Macheboeuf, Pascal Huguet, and Olivia Petit
- Subjects
Chemistry ,General Medicine ,Molecular biology ,General Biochemistry, Genetics and Molecular Biology ,Article - Abstract
> Streptococcus pyogenes, bacterie Gram positive, est un pathogene humain qui n’est en general responsable que d’infections mineures comme l’angine ou l’impetigo. Dans certains cas, il peut entrainer des affections plus severes comme la fasciite necrosante ou les rhumatismes articulaires aigus, voire la mort si un syndrome du choc toxique streptococcique (SCTS) survient [1]. Les premiers signes du SCTS sont la vasodilatation et l’alteration de la barriere endotheliale sous l’effet de la production de la proteine HBP (heparin binding protein) par les polynucleaires neutrophiles. Une fuite importante de plasma sanguin en resulte qui entraine la defaillance de plusieurs organes. Le principal facteur de virulence de S. pyogenes est la proteine M, qui forme des fibrilles a la surface de la bacterie [2]. Elle est impliquee dans l’adhesion du pathogene aux cellules epitheliales, sa penetration dans les tissus et sa protection contre la phagocytose [3, 4]. En outre, la proteine M permet a la bacterie d’echapper aux systemes immunitaires inne et acquis. Parmi les differentes variantes genetiques de la proteine M, la plus virulente est le serotype M1, qui a ete identifie dans tous les types d’infection. Lors d’une infection par S. pyogenes, la production de HBP par les neutrophiles est declenchee par la forte interaction entre la proteine M1 et le fibrinogene humain (Fg) qui conduit a l’agregation de ces deux proteines. L’agregat est reconnu par des recepteurs a la surface des neutrophiles, les integrines 2, qui sont alors actives et declenchent la secretion de HBP (Figure 1A) [5]. Afin de comprendre la premiere etape du mecanisme d’activation des neutrophiles et d’envisager le developpement de nouveaux vaccins, nous avons entrepris une etude structurale du complexe entre les fragments de la proteine M1 et du fibrinogene humain qui interagissent [6].
- Published
- 2011
18. Structural basis for ESCRT-III CHMP3 recruitment of AMSH
- Author
-
David Lutje Hulsik, Bettina Hartlieb, Pauline Macheboeuf, Yoshiko Usami, Charles Sabin, Winfried Weissenhorn, Julianna Solomons, Heinrich G. Göttlinger, Emilie Poudevigne, Unit for Virus Host-Cell Interactions [Grenoble] (UVHCI), Université Joseph Fourier - Grenoble 1 (UJF)-European Molecular Biology Laboratory [Grenoble] (EMBL)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS)-European Molecular Biology Laboratory [Grenoble] (EMBL)-Université Joseph Fourier - Grenoble 1 (UJF), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Thomas, Frank
- Subjects
MESH: Protein Structure, Quaternary ,MESH: Protein Structure, Secondary ,HIV Infections ,MESH: Amino Acid Sequence ,Protein Structure, Secondary ,Deubiquitinating enzyme ,MESH: Endosomal Sorting Complexes Required for Transport ,MESH: HIV-1 ,MESH: Protein Structure, Tertiary ,0302 clinical medicine ,Protein structure ,Ubiquitin ,Structural Biology ,MESH: Peptide Fragments ,Virus Release ,0303 health sciences ,biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,MESH: Virus Release ,MESH: HIV Infections ,3. Good health ,Biochemistry ,MESH: HEK293 Cells ,Ubiquitin Thiolesterase ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Endosome ,Molecular Sequence Data ,macromolecular substances ,ESCRT ,Article ,03 medical and health sciences ,Humans ,Amino Acid Sequence ,MESH: Hydrogen Bonding ,Binding site ,Protein Structure, Quaternary ,Molecular Biology ,030304 developmental biology ,MESH: Humans ,MESH: Molecular Sequence Data ,Endosomal Sorting Complexes Required for Transport ,Hydrogen Bonding ,MESH: Ubiquitin Thiolesterase ,MESH: Multiprotein Complexes ,Peptide Fragments ,Protein Structure, Tertiary ,HEK293 Cells ,Multiprotein Complexes ,biology.protein ,Biophysics ,HIV-1 ,030217 neurology & neurosurgery ,Cytokinesis - Abstract
International audience; Endosomal sorting complexes required for transport (ESCRT) recognize ubiquitinated cargo and catalyze diverse budding processes including multivesicular body biogenesis, enveloped virus egress, and cytokinesis. We present the crystal structure of an N-terminal fragment of the deubiquitinating enzyme AMSH (AMSHΔC) in complex with the C-terminal region of ESCRT-III CHMP3 (CHMP3ΔN). AMSHΔC folds into an elongated 90 Å long helical assembly that includes an unusual MIT domain. CHMP3ΔN is unstructured in solution and helical in complex with AMSHΔC, revealing a novel MIT domain interacting motif (MIM) that does not overlap with the CHMP1-AMSH binding site. ITC and SPR measurements demonstrate an unusual high-affinity MIM-MIT interaction. Structural analysis suggests a regulatory role for the N-terminal helical segment of AMSHΔC and its destabilization leads to a loss of function during HIV-1 budding. Our results indicate a tight coupling of ESCRT-III CHMP3 and AMSH functions and provide insight into the regulation of ESCRT-III.
- Published
- 2011
19. A gp41 MPER-specific Llama VHH Requires a Hydrophobic CDR3 for Neutralization but not for Antigen Recognition
- Author
-
Laura E. McCoy, Simone Battella, Charles Sabin, Alexandre M. J. J. Bonvin, Andreas Hinz, Robin A. Weiss, Michael S. Seaman, David Lutje Hulsik, Lucy Rutten, Miriam Hock, C. Theo Verrips, Alejandra Ramos, Winfried Weissenhorn, Nika M. Strokappe, Pauline Macheboeuf, Johannes P. M. Langedijk, Mohamed El Khattabi, Adrien Favier, Pascal Poignard, Ying-ying Liu, David Davis, Marlén M. I. Aasa-Chapman, Jean-Pierre Simorre, Anna Forsman Quigley, Unit for Virus Host-Cell Interactions [Grenoble] (UVHCI), Université Joseph Fourier - Grenoble 1 (UJF)-European Molecular Biology Laboratory [Grenoble] (EMBL)-Centre National de la Recherche Scientifique (CNRS), Departments of Applied Physics [New Haven], Yale University [New Haven], Research Department of Infection and Population Health [London], University College of London [London] (UCL), Independent Department for Medical Psychology and Medical Sociology, Universität Leipzig, Beth Israel Deaconess Medical Center [Boston] (BIDMC), Harvard Medical School [Boston] (HMS), Centre d'Immunologie de Marseille - Luminy (CIML), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ANR-10-LABX-0049,GRAL,Grenoble Alliance for Integrated Structural Cell Biology(2010), Centre National de la Recherche Scientifique (CNRS)-European Molecular Biology Laboratory [Grenoble] (EMBL)-Université Joseph Fourier - Grenoble 1 (UJF), Universität Leipzig [Leipzig], Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Macromolecular Assemblies ,MESH: HIV Envelope Protein gp41 ,MESH: Amino Acid Sequence ,Complementarity determining region ,Adaptive Immunity ,HIV Antibodies ,MESH: Base Sequence ,Antibody production ,Neutralization ,Epitope ,MESH: Antibodies, Neutralizing ,Epitopes ,Immunodeficiency Viruses ,Bacteriophages ,MESH: Animals ,Biomacromolecule-Ligand Interactions ,Enzyme-linked immunoassays ,lcsh:QH301-705.5 ,chemistry.chemical_classification ,0303 health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,MESH: Hydrophobic and Hydrophilic Interactions ,MESH: Neutralization Tests ,030302 biochemistry & molecular biology ,Antivirals ,Immunizations ,Lipids ,HIV Envelope Protein gp41 ,MESH: Surface Plasmon Resonance ,3. Good health ,MESH: Mutagenesis, Site-Directed ,International (English) ,Viral Envelope ,MESH: Camelids, New World ,MESH: Complementarity Determining Regions ,MESH: Immunization ,Antibody ,Camelids, New World ,Hydrophobic and Hydrophilic Interactions ,Research Article ,MESH: Proteolipids ,lcsh:Immunologic diseases. Allergy ,MESH: Epitopes ,medicine.drug_class ,Proteolipids ,Molecular Sequence Data ,Immunology ,Biophysics ,Membrane fusion ,Viral Structure ,Biology ,Monoclonal antibody ,Gp41 ,MESH: Single-Domain Antibodies ,Microbiology ,Antibodies ,Cell Line ,03 medical and health sciences ,Viral envelope ,Neutralization Tests ,ddc:570 ,Virology ,Genetics ,medicine ,Animals ,Humans ,Amino Acid Sequence ,Microbial Pathogens ,Molecular Biology ,030304 developmental biology ,MESH: Humans ,MESH: Molecular Sequence Data ,Base Sequence ,MESH: HIV Antibodies ,Crystal structure ,Immunity ,Viral Vaccines ,Single-Domain Antibodies ,Surface Plasmon Resonance ,Antibodies, Neutralizing ,Complementarity Determining Regions ,Molecular biology ,MESH: Cell Line ,lcsh:Biology (General) ,chemistry ,Mutagenesis, Site-Directed ,HIV-1 ,biology.protein ,Immunization ,Parasitology ,lcsh:RC581-607 ,Glycoprotein - Abstract
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10., Author Summary Due to the absence of an effective vaccine or cure for acquired immunodeficiency syndrome (AIDS), HIV-1 infections still result in high mortality. Two antibodies, 2F5 and 4E10, previously isolated from HIV-1 infected patients, prevent infections by binding to the MPER of gp41, a part of the virus that is difficult to access and only transiently exposed. Here, we immunized llamas with a gp41-based immunogen and subsequently isolated a small antibody fragment (VHH) that can easily access and recognize the MPER. We showed that a unit of two VHH, named bi-2H10, was indeed capable of preventing HIV-1 from infecting cells. We determined the three dimensional structure of the VHH and mapped its interaction site to an MPER region that overlaps with the 2F5 epitope. The 2H10 VHH displays a membrane binding component important for neutralization that resembles that of 2F5. In conclusion, we have developed an immunogen and a small antibody that may have great potential for development of novel anti-HIV/AIDS vaccines and treatments.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.