1. Conforming Delaunay triangulations in 3D
- Author
-
David Cohen-Steiner, Mariette Yvinec, Éric Colin de Verdière, Geometry, Algorithms and Robotics (PRISME), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and INRIA
- Subjects
Pitteway triangulation ,Control and Optimization ,Conforming Delaunay triangulation ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,Delaunay triangulation ,Computer Science::Computational Geometry ,Topology ,DELAUNAY TRIANGULATIONS ,Computer Science::Systems and Control ,ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMS ,Surface triangulation ,Mathematics ,CONFORMING DELAUNAY TRIANGULATIONS ,ComputingMethodologies_COMPUTERGRAPHICS ,Mesh ,Constrained Delaunay triangulation ,Chew's second algorithm ,Minimum-weight triangulation ,Bowyer–Watson algorithm ,Computer Science Applications ,Computational Mathematics ,MESHINGS ,Computational Theory and Mathematics ,Physics::Accelerator Physics ,Geometry and Topology ,Algorithm ,Ruppert's algorithm - Abstract
We describe an algorithm which, for any piecewise linear complex (PLC) in 3D, builds a Delaunay triangulation conforming to this PLC. The algorithm has been implemented, and yields in practice a relatively small number of Steiner points due to the fact that it adapts to the local geometry of the PLC. It is, to our knowledge, the first practical algorithm devoted to this problem.
- Published
- 2004
- Full Text
- View/download PDF