Back to Search Start Over

A polynomial-time algorithm for computing shortest paths of bounded curvature amidst moderate obstacles

Authors :
Sylvain Lazard
Jean-Daniel Boissonnat
Geometry, Algorithms and Robotics (PRISME)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Models, algorithms and geometry for computer graphics and vision (ISA)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Source :
International Journal of Computational Geometry and Applications, International Journal of Computational Geometry and Applications, World Scientific Publishing, 2003, 13 (3), pp.189-229. ⟨10.1142/S0218195903001128⟩, Symposium on Computational Geometry (SoCG'96), Symposium on Computational Geometry (SoCG'96), 1996, Philadelphia, United States. pp.242-251, ⟨10.1145/237218.237393⟩, International Journal of Computational Geometry and Applications, 2003, 13 (3), pp.189-229. ⟨10.1142/S0218195903001128⟩
Publication Year :
2003
Publisher :
HAL CCSD, 2003.

Abstract

Article dans revue scientifique avec comité de lecture.; International audience; In this paper, we consider the problem of computing shortest paths of bounded curvature amidst obstacles in the plane. More precisely, given two prescribed initial and final configurations (specifying the location and the direction of travel) and a set of obstacles in the plane, we want to compute a shortest $C^1$ path joining those two configurations, avoiding the obstacles, and with the further constraint that, on each $C^2$ piece, the radius of curvature is at least 1. In this paper, we consider the case of moderate obstacles (as introduced by Agarwal et al.) and present a polynomial-time exact algorithm to solve this problem.

Details

Language :
English
ISSN :
02181959
Database :
OpenAIRE
Journal :
International Journal of Computational Geometry and Applications, International Journal of Computational Geometry and Applications, World Scientific Publishing, 2003, 13 (3), pp.189-229. ⟨10.1142/S0218195903001128⟩, Symposium on Computational Geometry (SoCG'96), Symposium on Computational Geometry (SoCG'96), 1996, Philadelphia, United States. pp.242-251, ⟨10.1145/237218.237393⟩, International Journal of Computational Geometry and Applications, 2003, 13 (3), pp.189-229. ⟨10.1142/S0218195903001128⟩
Accession number :
edsair.doi.dedup.....42d56c85d39226f2b979c7f1373cd607
Full Text :
https://doi.org/10.1142/S0218195903001128⟩