3 results
Search Results
2. Thermal reffusivity: uncovering phonon behavior, structural defects, and domain size.
- Author
-
Yangsu XIE, Bowen ZHU, Jing LIU, Zaoli XU, and Xinwei WANG
- Abstract
To understand the relation between different nanostructures and thermal properties, a simple yet effective model is in demand for characterizing the underlying phonons and electrons scattering mechanisms. Herein, we make a systematic review on the newly developed thermal reffusivity theory. Like electrical resistivity which has been historically used as a theory for analyzing structural domain size and defect levels of metals, the thermal reffusivity can also uncover phonon behavior, structure defects and domain size of materials. We highlight that this new theory can be used for not only metals, but also nonmetals, even for amorphous materials. From the thermal reffusivity against temperature curves, the Debye temperature of the material and the ideal thermal diffusivity of single perfect crystal can be evaluated. From the residual thermal reffusivity at the 0 K limit, the structural thermal domain (STD) size of crystalline and amorphous materials can be obtained. The difference of white hair and normal black hair from heat conduction perspective is reported for the first time. Loss of melanin results in a worse thermal protection and a larger STD size in the white hair. By reviewing the different variation of thermal reffusivity against decreasing temperature profiles, we conclude that they reflected the structural connection in the materials. Ultimately, the future application of thermal reffusivity theory in studying 2D materials and amorphous materials is discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
3. How stacking disorder can conceal the actual structure of micas: the case of phengites.
- Author
-
Pavese, Alessandro and Diella, Valeria
- Subjects
NEUTRON diffraction ,MONTE Carlo method ,CATIONS ,MINERALS ,IONS - Abstract
The present study deals with how stochastic stackings of tetrahedral/octahedral phengitic sheets bearing diverse cation distributions affect diffraction signals and the structural inferences therefrom derived. The interest for such minerals is dictated by that the stability of phengite polytypes, their cation distributions and P/ T conditions of crystallization are related to each other. We focus our attention on layers' probabilistic sequences that preserve the topology of the polytypes 2 M(SG: C2/ c) and 3 T(SG: P312). Neutron diffraction intensities are modelled by a Monte Carlo approach and then used as artificial experimental data for conventional structure refinements that yield the occupancy factors in the fourfold (Si, Al) and sixfold (Al, Mg) coordination sites of 2 M and 3 T. The cation ordering from structure refinement tallies with the one of the 'average structure' of a stochastic stacking, but it can significantly differ from those of the individual tetrahedral/octahedral sheets. For instance, sheets having ordered cation arrangements can lead to a stochastic structure which is supposed to bear a fully disordered cation partitioning according to structure refinement. This affects the configuration entropy contributions: the values obtained by conventional refinements can deviate from the correct ones up to 30 %. The analysis of the equivalent reflection intensities brings to light the anomalies hinting at the occurrence of such stacking disorder (using modelled reflections, the mean ratio between standard deviation and average intensity of symmetry equivalent reflections is ideally 0 for perfect crystal structures, but it can amount up to 6 in stochastically disordered phengites). However, taking into account the instrumental uncertainties and the deviations from ideality of actual crystals, such phenomena are very difficult to be detected experimentally. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.