1. Sur la largeur des décompositions JSJ compliquées
- Author
-
Huszár, Kristóf, Spreer, Jonathan, Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), The University of Sydney, Chambers, Erin W., Gudmundsson, Joachim, ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019), ANR-20-CE48-0007,AlgoKnot,Aspects algorithmiques et combinatoires de la théorie des nœuds(2020), ANR-18-CE40-0032,GrR,Reconfiguration de Graphes(2018), ANR-21-CE48-0014,TWIN-WIDTH,Twin-width: théorie et applications(2021), and ANR-10-LABX-0059,CARMIN,Centers of Hosting and International Mathematical Encounters(2010)
- Subjects
Computational Geometry (cs.CG) ,FOS: Computer and information sciences ,F.2.2 ,G.2.2 ,generalized Heegaard splittings ,57Q15, 57N10, 05C75, 57M15 ,Theory of computation → Problems, reductions and completeness ,pathwidth ,triangulations ,Geometric Topology (math.GT) ,MSC: 57Q15, 57N10, 05C75, 57M15 ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,Mathematics of computing → Geometric topology ,computational 3-manifold topology ,Theory of computation → Fixed parameter tractability ,Mathematics - Geometric Topology ,ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.2: Graph Theory ,ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.2: Nonnumerical Algorithms and Problems ,fixed-parameter tractability ,JSJ decompositions ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,FOS: Mathematics ,treewidth ,Computer Science - Computational Geometry - Abstract
Motivated by the algorithmic study of 3-dimensional manifolds, we explore the structural relationship between the JSJ decomposition of a given 3-manifold and its triangulations. Building on work of Bachman, Derby-Talbot and Sedgwick, we show that a "sufficiently complicated" JSJ decomposition of a 3-manifold enforces a "complicated structure" for all of its triangulations. More concretely, we show that, under certain conditions, the treewidth (resp. pathwidth) of the graph that captures the incidences between the pieces of the JSJ decomposition of an irreducible, closed, orientable 3-manifold M yields a linear lower bound on its treewidth tw (M) (resp. pathwidth pw(M)), defined as the smallest treewidth (resp. pathwidth) of the dual graph of any triangulation of M. We present several applications of this result. We give the first example of an infinite family of bounded-treewidth 3-manifolds with unbounded pathwidth. We construct Haken 3-manifolds with arbitrarily large treewidth - previously the existence of such 3-manifolds was only known in the non-Haken case. We also show that the problem of providing a constant-factor approximation for the treewidth (resp. pathwidth) of bounded-degree graphs efficiently reduces to computing a constant-factor approximation for the treewidth (resp. pathwidth) of 3-manifolds., LIPIcs, Vol. 258, 39th International Symposium on Computational Geometry (SoCG 2023), pages 42:1-42:18
- Published
- 2023