Back to Search Start Over

Weighted Total Acquisition

Authors :
Guillaume Bagan
Marc Heinrich
Fionn Mc Inerney
Valentin Gledel
Graphes, AlgOrithmes et AppLications (GOAL)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Optimisation Combinatoire (G-SCOP_OC)
Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
School of Computing [Leeds]
University of Leeds
Algorithmique, Combinatoire et Recherche Opérationnelle (ACRO)
Laboratoire d'Informatique et Systèmes (LIS)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
ANR-14-CE25-0006,GAG,Jeux et graphes(2014)
ANR-17-CE40-0015,DISTANCIA,Théorie métrique des graphes(2017)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Discrete Applied Mathematics, Discrete Applied Mathematics, 2021, 304, pp.260-282. ⟨10.1016/j.dam.2021.07.040⟩, Discrete Applied Mathematics, Elsevier, 2021, 304, pp.260-282
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; In the Weighted Total Acquisition problem (WTA) on a weighted graph $G$ (only positive non-zero weights), a vertex $v$ can acquire the total weight of a neighbour $u$ if and only if the current weight of $v$ is at least that of $u$. The new weight of $u$ is then zero, and the new weight of $v$ is then the sum of the weights at $u$ and $v$ just before the acquisition. Over all possible acquisition sequences in $G$ with weight function $w$, the minimum number of vertices with a non-zero weight at the end is denoted by $a_t(G,w)$. Given a graph $G$, a weighting $w$, and an integer $k\geq 1$, the WTA problem asks whether $a_t(G,w)\leq k$. The Binary (Unary resp.) WTA problem corresponds to the WTA problem when the weights are encoded in binary (unary resp.).We prove that Unary WTA is polynomial-time solvable in graphs of bounded treewidth and degree. When only the treewidth is bounded, this algorithm is quasi-polynomial, i.e., it runs in time $W^{O(\log W)}$, where $W$ is the sum of the weights of the vertices. Moreover, we show that Unary WTA is FPT in trees when parameterized by the maximum degree. On the negative side, we show that WTA is NP-complete in trivially perfect graphs and split graphs, even when $k=1$ in the latter.We prove that the Binary WTA problem is NP-complete in trees of bounded degree, trees of bounded depth, and wheels, but that it is in XP for trees and wheels when parameterized by the solution size. Moreover, we show that Binary WTA is NP-complete in $K_{3,n}$, planar graphs of pathwidth 2, and unit interval graphs even when $k=1$, and in trivially perfect graphs when $k\geq 2$ (but polynomial-time solvable when $k=1$).

Details

Language :
English
ISSN :
0166218X
Database :
OpenAIRE
Journal :
Discrete Applied Mathematics, Discrete Applied Mathematics, 2021, 304, pp.260-282. ⟨10.1016/j.dam.2021.07.040⟩, Discrete Applied Mathematics, Elsevier, 2021, 304, pp.260-282
Accession number :
edsair.doi.dedup.....b7d5a51ee5680e2d885783fe97c25b2b