Back to Search Start Over

The Inverse Voronoi Problem in Graphs I: Hardness

Authors :
Bojan Mohar
Hebert Pérez-Rosés
Édouard Bonnet
Sergio Cabello
Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Faculty of Mathematics and Physics [Ljubljana] (FMF)
University of Ljubljana
Simon Fraser University (SFU.ca)
Universitat Rovira i Virgili
Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Bonnet, Édouard
Source :
Algorithmica, Algorithmica, Springer Verlag, 2020, Algorithmica, 2020
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

We introduce the inverse Voronoi diagram problem in graphs: given a graph G with positive edge-lengths and a collection $${\mathbb {U}}$$ of subsets of vertices of V(G), decide whether $${\mathbb {U}}$$ is a Voronoi diagram in G with respect to the shortest-path metric. We show that the problem is NP-hard, even for planar graphs where all the edges have unit length. We also study the parameterized complexity of the problem and show that the problem is W[1]-hard when parameterized by the number of Voronoi cells or by the pathwidth of the graph.

Details

Language :
English
ISSN :
01784617 and 14320541
Database :
OpenAIRE
Journal :
Algorithmica, Algorithmica, Springer Verlag, 2020, Algorithmica, 2020
Accession number :
edsair.doi.dedup.....e1d38f21d6f030a5c4d01463067ffad8