This work focuses on the study of the initial stages of ZnO atomic layer deposition (ALD) on atomically flat (100) In0.57Ga0.43As surface, notably by using in situ synchrotron techniques. Due to high electron mobility, III-V InGaAs semiconductor has been recognized as a promising material to replace Silicon channel in the metal-oxide-semiconductor-field-effect transistors (MOSFET). Ultrathin ZnO layer on InGaAs can be used as a passivation layer at the interface with the gate transistor dielectric, as well as tunneling layer inserted in between metal/InGaAs contact to decrease the Schottky barrier height and the contact resistance. In the recent years, ALD technique based on self-limiting surface chemical reactions has received world-wide attention for manufacturing highly conformal and homogeneous thin films with sub-nanometer thickness control at low temperatures compatible with industry specifications. However, the growth behavior strongly differs depending on the substrate surfaces. Thus for the creation of few monolayers thick films, the study of ALD in the initial stages of growth is of particular interest for improving the understanding of the growth mechanisms.For that purpose, we have developed and upgraded a thermal ALD reactor (MOON:MOCVD/ALD growth of Oxide Nanostructures) dedicated to monitor the growth of materials by in situ characterization techniques. The MOON reactor can be moved to synchrotron centers for monitoring material growth in situ by using X-ray based techniques, notably X-ray fluorescence, X-ray absorption, XRR, and grazing incidence diffraction. Also, optical in situ techniques can be used in the laboratory. In this work, we show the results of experiments obtained at two synchrotron beamlines, i.e. SIRIUS (SOLEIL, Saint-Aubin (France)) and ID3 (ESRF, Grenoble (France)).We show that ZnO growth in the initial stages is inhibited by the (100) InGaAs substrate, leading to a transient regime prior to the steady ALD is achieved. We report a detailed investigation of this transient regime and find that an ultra-thin (~1-nm-thick) 2D layer is indeed fabricated but with a growth rate so low that one may believe that nothing has been deposited on the surface. We identify the structural and chemical properties of that ultra-thin layer. Only afterward does the substrate inhibited of type 2 growth mode begins: as the cycle number increases, the growth per cycle (GPC) increases, then reaches a maximum and level down to a constant value (steady growth). For a better understanding of the 3D growth mode by reproducing the experimental growth per cycle curves we have developed a geometric model that schematizes the growth of hemispheroid islands by ALD. We show that this model allows obtaining quantitative growth parameters.When water is used as a reactant, we showed that by changing the water flow during the ALD process, it is possible to control the time delay (or cycle number) prior to 3D growth begins. It is very likely that the water flow controls the density of hydroxyl groups on the InGaAs surface. We also demonstrated ZnO ALD for different InGaAs substrate temperatures. By combining in situ X-ray absorption and grazing incidence scattering techniques, we identified a short-range-order atomic structure of the ZnO material, with an embryonic ZnO wurtzite, prior to 3D growth, then a long-range-order structure is detected both by X-ray absorption and X-ray diffraction, together with the appearance of a microstructure. At higher growth temperature, outside of the ALD window, we observed the well-known ZnO texturing when the layer thickness increases.At last, we report on the use of ultrathin ZnO layers on InGaAs in the electrical contact structure. The contact resistance of metal/ZnO/InGaAs samples was measured using Transfer Length Method (TLM). We show that specific contact resistivity of Al/p-InGaAs pads is reduced by inserting a ZnO tunnel layer in between Al and p-doped InGaAs., Ce travail porte sur l'étude des étapes initiales du dépôt de couches atomiques de ZnO (ALD) sur une surface (100) de In0,57Ga0,43As, par l'utilisation de techniques de caractérisation in situ (rayonnement synchrotron). En raison de la grande mobilité des électrons, le semi-conducteur III-V InGaAs est un matériau potentiel pour remplacer le canal de Silicium dans les transistors à effet de champ (MOSFET). Afin de diminuer la hauteur de la barrière Schottky et la résistance de contact, une couche ultra-mince (tunnel) de ZnO peut être insérée entre le métal et le semiconducteur InGaAs. Au cours de ces dernières années, la technique ALD, compatible avec les spécifications de l'industrie et basée sur des réactions chimiques de surface auto-limitantes, est utilisée pour la fabrication de films minces conformes et homogènes avec un contrôle sub-nanométrique de l’épaisseur. Cependant, le comportement au cours de la croissance diffère fortement en fonction de la surface du substrat. Ainsi, l'étude des premières étapes ALD est particulièrement intéressante afin d’améliorer la compréhension des mécanismes de croissance en vue de la création de films ultra-minces.Pour ce faire, nous avons développé et mis à niveau un réacteur thermique ALD (MOON) dédié. Il peut être installé sur des lignes de lumière synchrotron afin d’étudier la croissance des matériaux in situ avec des techniques telles que la fluorescence X, l’absorption X, la spectroscopie des rayons X ainsi que la diffraction X en incidence rasante. De plus, des techniques optiques de caractérisation in situ peuvent être utilisées en laboratoire ou couplées en milieu synchrotron. Les expériences au synchrotron ont été réalisées sur les lignes de lumière SIRIUS (SOLEIL, Saint-Aubin (France)) et ID3 (ESRF, Grenoble (France)).Nous montrons que dans sa phase initiale, la croissance ALD de ZnO est inhibée par le substrat (100) InGaAs, ce qui conduit à un régime transitoire avant le régime de croissance ALD stable. La première phase du régime transitoire conduit à la formation d’une couche d’oxyde de Zinc, ultra-mince (~1 nm d'épaisseur), fabriquée avec un taux de croissance très faible. L'absorption X et la diffusion X en incidence rasante montrent qu’à ce stade le matériau ZnO est désordonné (non cristallisé) et présente un ordre à courte distance caractérisé par une structure wurtzite embryonnaire. Ensuite, le régime transitoire entre dans une deuxième phase (croissance 3D), le taux de croissance par cycle (GPC) augmente, atteint un maximum puis diminue jusqu'à une valeur constante (croissance ALD stable). Afin de mieux comprendre le mode de croissance 3D nous avons développé un modèle géométrique qui schématise la croissance d’îlots hémisphériques par ALD. Ce modèle permet d'obtenir des paramètres quantitatifs de croissance.En modifiant le débit d’eau (H2O) utilisée comme réactif pendant le processus ALD, il est possible de contrôler le délai (ou le nombre de cycles) avant le début de la croissance 3D. Cet effet est très probablement lié à la variation de la densité des groupes hydroxyle à la surface de l'InGaAs. Par ailleurs, nous avons caractérisé la croissance ALD de ZnO pour différentes températures du substrat InGaAs (dans et hors fenêtre ALD). Les cartes de diffusion des RX réalisées en cours de dépôt, montrent l’apparition d’une phase cristallisée à longue distance en lien avec le démarrage de la croissance 3D. À température élevée, hors de la fenêtre ALD, nous observons une texturation de la couche ZnO lorsque son épaisseur augmente. Aucune relation d’épitaxie n’est observée.Enfin, nous rendons compte de l'utilisation de couches ZnO ultraminces sur InGaAs pour les contacts électriques. La résistance de contact des échantillons de métal/ZnO/InGaAs a été mesurée à l'aide de la méthode Transfert Length Method (TLM). Nous montrons que la résistivité de contact spécifique des tampons Al/p-InGaAs est réduite par l’insertion d’une couche tunnel ZnO entre l'Al et l'InGaAs dopé p.