25 results on '"Daniel Han-Kwan"'
Search Results
2. The non-relativistic limit of the Vlasov–Maxwell system with uniform macroscopic bounds
- Author
-
Nicolas Brigouleix and Daniel Han-Kwan
- Published
- 2022
- Full Text
- View/download PDF
3. Large-time behavior of small-data solutions to the Vlasov–Navier–Stokes system on the whole space
- Author
-
Daniel Han-Kwan
- Published
- 2022
- Full Text
- View/download PDF
4. Nonlinear Instability of Vlasov-Maxwell Systems in the Classical and Quasineutral Limits.
- Author
-
Daniel Han-Kwan and Toan T. Nguyen
- Published
- 2016
- Full Text
- View/download PDF
5. Global Stability and Local Bifurcations in a Two-Fluid Model for Tokamak Plasma.
- Author
-
Delyan Zhelyazov, Daniel Han-Kwan, and Jens D. M. Rademacher
- Published
- 2015
- Full Text
- View/download PDF
6. Uniqueness of the solution to the 2D Vlasov–Navier–Stokes system
- Author
-
Daniel Han-Kwan, Iván Moyano, Evelyne Miot, Ayman Moussa, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut Fourier (IF), and Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
General Mathematics ,010102 general mathematics ,Vlasov equation ,Context (language use) ,Function (mathematics) ,Space (mathematics) ,01 natural sciences ,Mathematics - Analysis of PDEs ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Order (group theory) ,Applied mathematics ,Maximal function ,Navier stokes ,Uniqueness ,0101 mathematics ,Mathematics - Abstract
International audience; We prove a uniqueness result for weak solutions to the Vlasov-Navier-Stokes system in two dimensions, both in the whole space and in the periodic case, under a mild decay condition on the initial distribution function. The main result is achieved by combining methods from optimal transportation (introduced in this context by G. Loeper) with the use of Hardy's maximal function, in order to obtain some fine Wassestein-like estimates for the difference of two solutions of the Vlasov equation.
- Published
- 2019
- Full Text
- View/download PDF
7. On the linearized Vlasov-Poisson system on the whole space around stable homogeneous equilibria
- Author
-
Toan T. Nguyen, Daniel Han-Kwan, Frédéric Rousset, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019), ANR-18-CE40-0027,SingFlows,Ecoulements avec singularités : couches limites, filaments de vortex, interaction vague-structure(2018), and ANR-18-CE40-0020,ODA,Ondes déterministes et aléatoires(2018)
- Subjects
Physics ,010102 general mathematics ,Complex system ,Statistical and Nonlinear Physics ,Space (mathematics) ,01 natural sciences ,010101 applied mathematics ,Mathematics - Analysis of PDEs ,Homogeneous ,Physical space ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Poisson system ,Mathematical Physics ,Analysis of PDEs (math.AP) ,Mathematical physics - Abstract
We study the linearized Vlasov–Poisson system around suitably stable homogeneous equilibria on $${\mathbb {R}}^d\times {\mathbb {R}}^d$$ (for any $$d \ge 1$$ ) and establish dispersive $$L^\infty $$ decay estimates in the physical space.
- Published
- 2021
- Full Text
- View/download PDF
8. Concentration versus absorption for the Vlasov-Navier-Stokes system on bounded domains
- Author
-
Lucas Ertzbischoff, Ayman Moussa, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,01 natural sciences ,Domain (mathematical analysis) ,Exponential function ,010101 applied mathematics ,symbols.namesake ,Mathematics - Analysis of PDEs ,Distribution function ,Flow velocity ,Bounded function ,Dirichlet boundary condition ,FOS: Mathematics ,symbols ,Boundary value problem ,0101 mathematics ,[MATH]Mathematics [math] ,Absorption (electromagnetic radiation) ,Mathematical Physics ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
We study the large time behaviour of small data solutions to the Vlasov–Navier–Stokes system set on Ω × R 3 , for a smooth bounded domain Ω of R 3 , with homogeneous Dirichlet boundary condition for the fluid and absorption boundary condition for the kinetic phase. We prove that the fluid velocity homogenizes to 0 while the distribution function concentrates towards a Dirac mass in velocity centred at 0, with an exponential rate. The proof, which follows the methods introduced in Han-Kwan et al (2020 Arch. Ration. Mech. Anal. 236 1273–323), requires a careful analysis of the boundary effects. We also exhibit examples of classes of initial data leading to a variety of asymptotic behaviours for the kinetic density, from total absorption to no absorption at all.
- Published
- 2021
- Full Text
- View/download PDF
9. From Newton's second law to Euler's equations of perfect fluids
- Author
-
Mikaela Iacobelli, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019)
- Subjects
General Mathematics ,FOS: Physical sciences ,01 natural sciences ,symbols.namesake ,Mathematics - Analysis of PDEs ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,FOS: Mathematics ,Fluid dynamics ,Coulomb ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Incompressible euler equations ,Limit (mathematics) ,0101 mathematics ,Mathematical Physics ,Physics ,Heuristic ,Applied Mathematics ,010102 general mathematics ,Dynamics (mechanics) ,Mathematical Physics (math-ph) ,010101 applied mathematics ,Classical mechanics ,Energy method ,Euler's formula ,symbols ,Analysis of PDEs (math.AP) - Abstract
Vlasov equations can be formally derived from N-body dynamics in the mean-field limit. In some suitable singular limits, they may themselves converge to fluid dynamics equations. Motivated by this heuristic, we introduce natural scalings under which the incompressible Euler equations can be rigorously derived from N-body dynamics with repulsive Coulomb interaction. Our analysis is based on the modulated energy methods of Brenier and Serfaty., Minor typos corrected
- Published
- 2021
- Full Text
- View/download PDF
10. Quasineutral limit for Vlasov–Poisson via Wasserstein stability estimates in higher dimension
- Author
-
Mikaela Iacobelli, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Pure Mathematics and Mathematical Statistics (DPMMS), Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), and University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
- Subjects
Work (thermodynamics) ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Poisson distribution ,01 natural sciences ,Stability (probability) ,010101 applied mathematics ,symbols.namesake ,Dimension (vector space) ,Physics::Plasma Physics ,Physics::Space Physics ,symbols ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Analysis ,Mathematics - Abstract
This work is concerned with the quasineutral limit of the Vlasov–Poisson system in two and three dimensions. We justify the formal limit for very small but rough perturbations of analytic initial data, generalizing the results of [12] to higher dimension.
- Published
- 2017
- Full Text
- View/download PDF
11. Large time behavior of the Vlasov-Navier-Stokes system on the torus
- Author
-
Iván Moyano, Ayman Moussa, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Statistical Laboratory [Cambridge], Department of Pure Mathematics and Mathematical Statistics (DPMMS), Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)-Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM), and ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019)
- Subjects
Physics ,Mechanical Engineering ,Dirac (video compression format) ,010102 general mathematics ,Mathematical analysis ,Complex system ,Structure (category theory) ,Mathematics::Analysis of PDEs ,Torus ,Type (model theory) ,01 natural sciences ,Exponential function ,010101 applied mathematics ,Mathematics (miscellaneous) ,Distribution function ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Analysis ,Energy (signal processing) ,Analysis of PDEs (math.AP) - Abstract
International audience; We study the large time behavior of Fujita–Kato type solutions to the Vlasov–Navier–Stokes system set on $\T^3 \times \R^3$. Under the assumption that the initial so-called modulated energy is small enough, we prove that the distribution function converges to a Dirac mass in velocity, with exponential rate. The proof is based on the fine structure of the system and on a bootstrap analysis allowing us to get global bounds on moments.
- Published
- 2019
- Full Text
- View/download PDF
12. Asymptotic stability of equilibria for screened Vlasov-Poisson systems via pointwise dispersive estimates
- Author
-
Daniel Han-Kwan, Frédéric Rousset, Toan T. Nguyen, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Pennsylvania State University (Penn State), and Penn State System
- Subjects
General Physics and Astronomy ,Poisson distribution ,Space (mathematics) ,01 natural sciences ,symbols.namesake ,Mathematics - Analysis of PDEs ,Exponential stability ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Landau damping ,0101 mathematics ,Mathematical Physics ,Mathematics ,Pointwise ,Smoothness (probability theory) ,Partial differential equation ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Lipschitz continuity ,symbols ,010307 mathematical physics ,Geometry and Topology ,Analysis ,Analysis of PDEs (math.AP) - Abstract
We revisit the proof of Landau damping near stable homogenous equilibria of Vlasov-Poisson systems with screened interactions in the whole space $\mathbb{R}^d$ (for $d\geq3$) that was first established by Bedrossian, Masmoudi and Mouhot. Our proof follows a Lagrangian approach and relies on precise pointwise in time dispersive estimates in the physical space for the linearized problem that should be of independent interest. This allows to cut down the smoothness of the initial data required in Bedrossian at al. (roughly, we only need Lipschitz regularity). Moreover, the time decay estimates we prove are essentially sharp, being the same as those for free transport, up to a logarithmic correction., Comment: 25 pages, minor typos fixed
- Published
- 2019
- Full Text
- View/download PDF
13. Long time estimates for the Vlasov-Maxwell system in the non-relativistic limit
- Author
-
Daniel Han-Kwan, Toan T. Nguyen, Frédéric Rousset, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Pennsylvania State University (Penn State), Penn State System, Laboratoire de Mathématiques d'Orsay (LMO), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Polynomial ,010102 general mathematics ,Mathematical analysis ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Complex system ,FOS: Physical sciences ,Inverse ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,01 natural sciences ,Speed of light (cellular automaton) ,Stability (probability) ,010101 applied mathematics ,Sobolev space ,Arbitrarily large ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Mathematical Physics ,Analysis of PDEs (math.AP) - Abstract
International audience; In this paper, we study the Vlasov-Maxwell system in the non-relativistic limit, that is in the regime where the speed of light is a very large parameter. We consider data lying in the vicinity of homogeneous equilibria that are stable in the sense of Penrose (for the Vlasov-Poisson system), and prove Sobolev stability estimates that are valid for times which are polynomial in terms of the speed of light and of the inverse of size of initial perturbations. We build a kind of higher-order Vlasov-Darwin approximation which allows us to reach arbitrarily large powers of the speed of light.
- Published
- 2018
- Full Text
- View/download PDF
14. Quasineutral limit for Vlasov-Poisson with Penrose stable data
- Author
-
Daniel Han-Kwan, Frédéric Rousset, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Han-Kwan, Daniel, and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Physics ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,Dirac (software) ,Vlasov equation ,Poisson distribution ,01 natural sciences ,Stability (probability) ,010101 applied mathematics ,Sobolev space ,symbols.namesake ,Mathematics - Analysis of PDEs ,Distribution (mathematics) ,Physics::Plasma Physics ,Physics::Space Physics ,symbols ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Variable (mathematics) - Abstract
International audience; We study the quasineutral limit of a Vlasov-Poisson system that describes the dynamics of ions in a plasma. We handle data with Sobolev regularity under the sharp assumption that the profile of the initial data in the velocity variable satisfies a Penrose stability condition. As a by-product of our analysis, we obtain a well-posedness theory for the limit equation (which is a Vlasov equation with Dirac distribution as interaction kernel) for such data.
- Published
- 2016
- Full Text
- View/download PDF
15. On the controllability of the relativistic Vlasov–Maxwell system
- Author
-
Olivier Glass and Daniel Han-Kwan
- Subjects
Applied Mathematics ,General Mathematics ,Mathematical analysis ,Torus ,Magnetic field ,Controllability ,symbols.namesake ,Distribution function ,Maxwell's equations ,Scheme (mathematics) ,symbols ,Speed of light ,Absorption (logic) ,Mathematics - Abstract
In this paper, we study the controllability of the two-dimensional relativistic Vlasov-Maxwell system in a torus, by means of an interior control. We give two types of results. With the geometric control condition on the control set, we prove the local exact controllability of the system in large time. Our proof in this case is based on the return method, on some results on the control of the Maxwell equations, and on a suitable approximation scheme to solve the non-linear Vlasov-Maxwell system on the torus with an absorption procedure. Without geometric control condition, but assuming that a strip of the torus is contained in the control set and under certain additional conditions on the initial data, we establish a controllability result on the distribution function only, also in large time. Here, we need some additional arguments based on the asymptotics of the Vlasov-Maxwell system with large speed of light and on our previous results concerning the controllability of the Vlasov-Poisson system with an external magnetic field [14].
- Published
- 2015
- Full Text
- View/download PDF
16. Control of water waves
- Author
-
Pietro Baldi, Daniel Han-Kwan, Thomas Alazard, Baldi, Pietro, Alazard, Thoma, Han Kwan, Daniel, Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques Laurent Schwartz (CMLS), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Work (thermodynamics) ,General Mathematics ,Controllability, water waves, capillarity (surface tension), Ingham inequality, paradifferential calculus ,01 natural sciences ,symbols.namesake ,Mathematics - Analysis of PDEs ,Control theory ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics - Optimization and Control ,Joint (geology) ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mechanics ,Euler equations ,010101 applied mathematics ,Controllability ,Optimization and Control (math.OC) ,Free surface ,symbols ,Compressibility ,Solid body ,Analysis of PDEs (math.AP) - Abstract
We prove local exact controllability in arbitrary short time of the two-dimensional incompressible Euler equation with free surface, in the case with surface tension. This proves that one can generate arbitrary small amplitude periodic gravity-capillary water waves by blowing on a localized portion of the free surface of a liquid., Comment: 71 pages
- Published
- 2018
- Full Text
- View/download PDF
17. On propagation of higher space regularity for non-linear Vlasov equations
- Author
-
Daniel Han-Kwan
- Subjects
Numerical Analysis ,Class (set theory) ,Work (thermodynamics) ,Applied Mathematics ,Mathematical analysis ,Context (language use) ,Space (mathematics) ,Sobolev space ,Nonlinear system ,Mathematics - Analysis of PDEs ,Physics::Plasma Physics ,Norm (mathematics) ,FOS: Mathematics ,35Q83 ,kinetic averaging lemmas ,kinetic transport equations ,Limit (mathematics) ,Analysis ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
This work is concerned with the broad question of propagation of regularity for smooth solutions to nonlinear Vlasov equations. For a class of equations (that includes Vlasov–Poisson and relativistic Vlasov–Maxwell systems), we prove that higher regularity in space is propagated, locally in time, into higher regularity for the moments in velocity of the solution. This in turn can be translated into some anisotropic Sobolev higher regularity for the solution itself, which can be interpreted as a kind of weak propagation of space regularity. To this end, we adapt the methods introduced by D. Han-Kwan and F. Rousset (Ann. Sci. Ecole Norm. Sup. 49:6 (2016) 1445–1495) in the context of the quasineutral limit of the Vlasov–Poisson system.
- Published
- 2017
18. The quasineutral limit of the Vlasov–Poisson equation in Wasserstein metric
- Author
-
Mikaela Iacobelli, Daniel Han-Kwan, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Pure Mathematics and Mathematical Statistics (DPMMS), Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), and University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
- Subjects
Work (thermodynamics) ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,01 natural sciences ,Measure (mathematics) ,Stability (probability) ,010101 applied mathematics ,Massless particle ,Wasserstein metric ,Convergence (routing) ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Limit (mathematics) ,0101 mathematics ,Poisson's equation ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
In this work, we study the quasineutral limit of the one-dimensional Vlasov-Poisson equation for ions with massless thermalized electrons. We prove new weak-strong stability estimates in the Wasserstein metric that allow us to extend and improve previously known convergence results. In particular, we show that given a possibly unstable analytic initial profile, the formal limit holds for sequences of measure initial data converging sufficiently fast in the Wasserstein metric to this profile. This is achieved without assuming uniform analytic regularity.
- Published
- 2017
- Full Text
- View/download PDF
19. The Vlasov-Navier-Stokes system in a 2D pipe: existence and stability of regular equilibria
- Author
-
Ayman Moussa, Olivier Glass, Daniel Han-Kwan, Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de Mathématiques Laurent Schwartz (CMLS), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Mechanical Engineering ,010102 general mathematics ,Mathematical analysis ,Complex system ,Thermodynamics ,Hagen–Poiseuille equation ,Kinetic energy ,01 natural sciences ,Stability (probability) ,010101 applied mathematics ,Physics::Fluid Dynamics ,Mathematics (miscellaneous) ,Mathematics - Analysis of PDEs ,Exponential stability ,Phase (matter) ,FOS: Mathematics ,Boundary value problem ,0101 mathematics ,[MATH]Mathematics [math] ,Analysis ,Stationary state ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
International audience; In this paper, we study the Vlasov-Navier-Stokes system in a 2D pipe with partially absorbing boundary conditions. We show the existence of stationary states for this system near small Poiseuille flows for the fluid phase, for which the kinetic phase is not trivial. We prove the asymptotic stability of these states with respect to appropriately compactly supported perturbations. The analysis relies on geometric control conditions which help to avoid any concentration phenomenon for the kinetic phase.
- Published
- 2016
- Full Text
- View/download PDF
20. Instabilities in the mean field limit
- Author
-
Daniel Han-Kwan and Toan T. Nguyen
- Subjects
Physics ,Mean field limit ,010102 general mathematics ,Dimension (graph theory) ,Order (ring theory) ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,01 natural sciences ,Instability ,010101 applied mathematics ,Interaction potential ,Mathematics - Analysis of PDEs ,Homogeneous ,Coulomb ,FOS: Mathematics ,0101 mathematics ,Mathematical Physics ,Mathematical physics ,Analysis of PDEs (math.AP) - Abstract
Consider a system of $N$ particles interacting through Newton's second law with Coulomb interaction potential in one spatial dimension or a $\mathcal{C}^2$ smooth potential in any dimension. We prove that in the mean field limit $N \to + \infty$, the $N$ particles system displays instabilities in times of order $\log N$ for some configurations approximately distributed according to unstable homogeneous equilibria., Comment: minor typos corrected; Journal of Statistical Physics, accepted
- Published
- 2016
- Full Text
- View/download PDF
21. Nonlinear instability of Vlasov-Maxwell systems in the classical and quasineutral limits
- Author
-
Daniel Han-Kwan and Toan T. Nguyen
- Subjects
Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Inverse ,Order (ring theory) ,01 natural sciences ,Instability ,Classical limit ,010101 applied mathematics ,Sobolev space ,Computational Mathematics ,symbols.namesake ,Mathematics - Analysis of PDEs ,Physics::Plasma Physics ,FOS: Mathematics ,symbols ,Speed of light ,Limit (mathematics) ,0101 mathematics ,Analysis ,Debye length ,Analysis of PDEs (math.AP) ,Mathematics - Abstract
We study the instability of solutions to the relativistic Vlasov--Maxwell systems in two limiting regimes: the classical limit when the speed of light tends to infinity and the quasineutral limit when the Debye length tends to zero. First, in the classical limit, $\varepsilon \to 0$, with $\varepsilon$ being the inverse of the speed of light, we construct a family of solutions that converge initially polynomially fast to a homogeneous solution $\mu$ of Vlasov--Poisson systems in arbitrarily high Sobolev norms, but become of order one away from $\mu$ in arbitrary negative Sobolev norms within time of order $|\log \varepsilon|$. Second, we deduce the invalidity of the quasineutral limit in $L^2$ in arbitrarily short time.
- Published
- 2015
22. Global Stability and Local Bifurcations in a Two-Fluid Model for Tokamak
- Author
-
D. Zhelyazov, Daniel Han-Kwan, and Jens D. M. Rademacher
- Subjects
Physics ,Steady state ,Tokamak ,Laminar flow ,Mechanics ,Two-fluid model ,Stability (probability) ,law.invention ,Viscosity ,Nonlinear system ,Classical mechanics ,Mathematics - Analysis of PDEs ,law ,Modeling and Simulation ,FOS: Mathematics ,Analysis ,Bifurcation ,Analysis of PDEs (math.AP) - Abstract
We study a two-fluid description of high and low temperature components of the electron velocity distribution of an idealized tokamak plasma. We refine previous results on the laminar steady-state solution. On the one hand, we prove global stability outside a parameter set of possible linear instability. On the other hand, for a large set of parameters, we prove the primary instabilities for varying temperature difference stem from the lowest spatial harmonics. We moreover show that any codimension-one bifurcation is a supercritical Andronov-Hopf bifurcation, which yields stable periodic solutions in the form of traveling waves. In the degenerate case, where the instability region in the temperature difference is a point, we prove that the bifurcating periodic orbits form an arc of stable periodic solutions. We provide numerical simulations to illustrate and corroborate our analysis. These also suggest that the stable periodic orbit, which bifurcated from the steady-state, undergoes additional bifurcations., 25 pages
- Published
- 2015
23. On the Vlasov-Maxwell System : régularity and non-relativistic limit
- Author
-
Brigouleix, Nicolas, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique de Paris, François Golse, and Daniel Han-Kwan
- Subjects
Regularity ,Non-Relativistic limit ,Théorie cinétique ,Limite non-Relativiste ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,EDPs ,Vlasov-Maxwell ,Régularité ,PDEs ,Kinetic theory - Abstract
In this dissertation, we study the Vlasov-Maxwell system of partial differential equations, describing the evolution of the distribution function of charged particles in a plasma. More precisely, we study the regularity of solutions to this system, and the question of the non-relativstic limit.In the first part, we study a Toy-model, combining the Vlasov equation with a system of transport equations. We use the methods developed to obtain and imrpove the Glassey-Strauss criterion, which gives a sufficient condition under which strong solutions do not develop singularities. The loss of regularity occures when the speed of the particles is close to the characteristic speed of the joined hyperbolic system. The same phenomenon occures for the solutions of the Toy-model, but its structure is easier to handle.In the second part, we focus on the question of the non-relativistic limit. After a rescaling of the equations, the speed of light can be considered as a big parameter. When it tends to infinity, it is called the non-relativistic limit. At first order, the non-relativistic limit of the Vlasov-Maxwell system is the Vlasov-Poisson system. First, an iterative method giving arbitrary high non-relativistic approximations is established. These systems combine the Vlasov-equation with elliptic systems of equations, and are well-posed in some weigthed Sobolev spaces. We also prove a result on the non-relativistic limit to the Vlasov-Poisson system under the weaker assumption of boundedness of the macroscopic density. We study a functional quantifying the Wasserstein distance between weak solutions of both systems.; Cette thèse est consacrée à l'étude du système d'équations aux dérivées partielles de Vlasov-Maxwell qui décrit l'évolution au cours du temps de la fonction de distribution de particules chargées dans un plasma. Nos travaux portent plus particulièrement sur la régularité des solutions de ce système et le problème de la limite non-relativiste.Dans un premier temps, on étudie un modèle jouet combinant une équation de Vlasov et un système d'équations de transport. On utilise les méthodes utilisées pour obtenir et améliorer le critère de Glassey-Strauss qui donne une condition suffisante sous laquelle une solution forte du système de Vlasov-Maxwell ne développe pas de singularités. La perte de régularité se manifeste lorsque la vitesse des particules est proche de la vitesse de résonnance du système hyperbolique adjoint. Le même phénomène se produit pour les solutions de notre système jouet, mais il possède une structure moins complexe.Dans un deuxième temps, on aborde la question de la limite non relativiste. Après adimensionnement, la vitesse de la lumière peut être considérée comme un grand paramètre du système. Lorsque celui ci tend vers l'infini, on parle de limite non-relativiste. Au premier ordrer, la limite non relativiste du système de Vlasov-Maxwell est le système de Vlasov-Poisson. Dans un premier chapitre, on établit une méthode itérative qui permet formellement d'obtenir des systèmes couplant l'équation de Vlasov à un système elliptique et formant une approximation non relativiste d'ordre arbitrairement élevé du système de Vlasov-Maxwell. Ces systèmes sont de plus bien posés dans certains espaces de Sobolev. Dans un second chapitre on démontre un résultat de limite non relativiste vers le système de Vlasov-Poisson sous des conditions ne portant que sur la densité macroscopique de charges. Pour ce faire on étudie une fonctionnelle quantifiant la distance de Wasserstein entre les solutions faibles des deux systèmes.
- Published
- 2020
24. Sur le système de Vlasov-Maxwell : régularité et limite non relativiste
- Author
-
Brigouleix, Nicolas, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique de Paris, François Golse, Daniel Han-Kwan, and STAR, ABES
- Subjects
Regularity ,Non-Relativistic limit ,Théorie cinétique ,Limite non-Relativiste ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,EDPs ,Vlasov-Maxwell ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,Régularité ,PDEs ,Kinetic theory - Abstract
In this dissertation, we study the Vlasov-Maxwell system of partial differential equations, describing the evolution of the distribution function of charged particles in a plasma. More precisely, we study the regularity of solutions to this system, and the question of the non-relativstic limit.In the first part, we study a Toy-model, combining the Vlasov equation with a system of transport equations. We use the methods developed to obtain and imrpove the Glassey-Strauss criterion, which gives a sufficient condition under which strong solutions do not develop singularities. The loss of regularity occures when the speed of the particles is close to the characteristic speed of the joined hyperbolic system. The same phenomenon occures for the solutions of the Toy-model, but its structure is easier to handle.In the second part, we focus on the question of the non-relativistic limit. After a rescaling of the equations, the speed of light can be considered as a big parameter. When it tends to infinity, it is called the non-relativistic limit. At first order, the non-relativistic limit of the Vlasov-Maxwell system is the Vlasov-Poisson system. First, an iterative method giving arbitrary high non-relativistic approximations is established. These systems combine the Vlasov-equation with elliptic systems of equations, and are well-posed in some weigthed Sobolev spaces. We also prove a result on the non-relativistic limit to the Vlasov-Poisson system under the weaker assumption of boundedness of the macroscopic density. We study a functional quantifying the Wasserstein distance between weak solutions of both systems., Cette thèse est consacrée à l'étude du système d'équations aux dérivées partielles de Vlasov-Maxwell qui décrit l'évolution au cours du temps de la fonction de distribution de particules chargées dans un plasma. Nos travaux portent plus particulièrement sur la régularité des solutions de ce système et le problème de la limite non-relativiste.Dans un premier temps, on étudie un modèle jouet combinant une équation de Vlasov et un système d'équations de transport. On utilise les méthodes utilisées pour obtenir et améliorer le critère de Glassey-Strauss qui donne une condition suffisante sous laquelle une solution forte du système de Vlasov-Maxwell ne développe pas de singularités. La perte de régularité se manifeste lorsque la vitesse des particules est proche de la vitesse de résonnance du système hyperbolique adjoint. Le même phénomène se produit pour les solutions de notre système jouet, mais il possède une structure moins complexe.Dans un deuxième temps, on aborde la question de la limite non relativiste. Après adimensionnement, la vitesse de la lumière peut être considérée comme un grand paramètre du système. Lorsque celui ci tend vers l'infini, on parle de limite non-relativiste. Au premier ordrer, la limite non relativiste du système de Vlasov-Maxwell est le système de Vlasov-Poisson. Dans un premier chapitre, on établit une méthode itérative qui permet formellement d'obtenir des systèmes couplant l'équation de Vlasov à un système elliptique et formant une approximation non relativiste d'ordre arbitrairement élevé du système de Vlasov-Maxwell. Ces systèmes sont de plus bien posés dans certains espaces de Sobolev. Dans un second chapitre on démontre un résultat de limite non relativiste vers le système de Vlasov-Poisson sous des conditions ne portant que sur la densité macroscopique de charges. Pour ce faire on étudie une fonctionnelle quantifiant la distance de Wasserstein entre les solutions faibles des deux systèmes.
- Published
- 2020
25. Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et de Schrödinger
- Author
-
Ivan Moyano, Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique, Université Paris-Saclay, Karine Beauchard, and Daniel Han-Kwan
- Subjects
contrôlabilité ,modèles cinétiques ,équations paraboliques dégénérées ,degenerate parabolic equations ,kinetic models ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Schrödinger equation ,équation de Schrödinger ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,controllability - Abstract
Ce mémoire présente les travaux réalisés au cours de ma thèse dans le but d’étudier la contrôlabilité de quelques équations aux dérivées partielles.La première partie de cette thèse est consacrée à l’étude de la contrôlabilité de quelques équations cinétiques dans différents régimes. Dans un régime collisionnel, nous étudions la contrôlabilité de l’équation de Kolmogorov, un modèle de type Fokker-Planck cinétique, posée dans l’espace de phases R d ×R d . Nous obtenons la contrôlabilité à zéro de cette équation grâce à l’utilisation d’une inégalité spectrale associée à l’opérateur Laplacien dans tout l’espace. Dans un régime non-collisionnel, nous étudions la contrôlabilité de deux systèmes de couplage fluide-cinétique, les systèmes de Vlasov-Stokes et de Vlasov-Navier-Stokes, comportant des non-linéarités dues au terme de couplage. Dans ces cas, l’approche repose sur la méthode du retour.Dans la deuxième partie nous étudions la contrôlabilité d’une famille d’équations paraboliques dégénérées 1-D par la méthode de platitude, qui permet la constructions de contrôles explicites.La troisième partie porte sur le problème de la contrôlabilité de l’équation de Schrödinger par la forme du domaine, c’est-à-dire, en utilisant le domaine comme variable de contrôle. Nous obtenons un résultat de ce type dans le cas du disque unité bidimensionnel. Nos méthodes sont basées sur un résultat de contrôle exact local autour d’une certaine trajectoire, obtenu grâce au théorème d’inversion locale.; This memoir presents the results obtained during my PhD, whose goal is the study of the controllability of some PartialDifferential Equations.The first part of this thesis is concerned with the study of the controllability of some kinetic equations undergoing differentregimes. Under a collisional regime, we study the controllability of the Kolmogorov equation, a particular case of kinetic Fokker-Planck equation, in the phase space R d × R d . We obtain the null-controllability of this equation thanks to the use of a spectral inequality associated to the Laplace operator in the whole space. Under a non-collisional regime, we study the controllability of two fluid-kinetic models, the Vlasov-Stokes system and the Vlasov-Navier-Stokes system, which exhibe nonlinearities due to the coupling terms. In those cases, the strategy relies on the Return method.In the second part, we study the controllability of a family of 1-D degenerate parabolic equations by the flatness method,which allows the construction of explicit controls.The third part is focused on the problem of the controllability of the Schrödinger equation via domain deformations, i.e., using the domain as a control. We obtain a result of this kind in the case of the two-dimensional unit disk, for radial data. Our methods are based on a local exact controllability result around a certain trajectory, obtained thanks to the Inverse Mapping theorem.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.