Back to Search Start Over

Uniqueness of the solution to the 2D Vlasov–Navier–Stokes system

Authors :
Daniel Han-Kwan
Iván Moyano
Evelyne Miot
Ayman Moussa
Centre de Mathématiques Laurent Schwartz (CMLS)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Institut Fourier (IF )
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Source :
Revista Math. Iberoamericana, Revista Math. Iberoamericana, In press, ⟨10.4171/rmi/1120⟩
Publication Year :
2019
Publisher :
European Mathematical Society - EMS - Publishing House GmbH, 2019.

Abstract

International audience; We prove a uniqueness result for weak solutions to the Vlasov-Navier-Stokes system in two dimensions, both in the whole space and in the periodic case, under a mild decay condition on the initial distribution function. The main result is achieved by combining methods from optimal transportation (introduced in this context by G. Loeper) with the use of Hardy's maximal function, in order to obtain some fine Wassestein-like estimates for the difference of two solutions of the Vlasov equation.

Details

ISSN :
02132230
Volume :
36
Database :
OpenAIRE
Journal :
Revista Matemática Iberoamericana
Accession number :
edsair.doi.dedup.....568f15d9edeacefd5f247710802706c4
Full Text :
https://doi.org/10.4171/rmi/1120