Back to Search
Start Over
Uniqueness of the solution to the 2D Vlasov–Navier–Stokes system
- Source :
- Revista Math. Iberoamericana, Revista Math. Iberoamericana, In press, ⟨10.4171/rmi/1120⟩
- Publication Year :
- 2019
- Publisher :
- European Mathematical Society - EMS - Publishing House GmbH, 2019.
-
Abstract
- International audience; We prove a uniqueness result for weak solutions to the Vlasov-Navier-Stokes system in two dimensions, both in the whole space and in the periodic case, under a mild decay condition on the initial distribution function. The main result is achieved by combining methods from optimal transportation (introduced in this context by G. Loeper) with the use of Hardy's maximal function, in order to obtain some fine Wassestein-like estimates for the difference of two solutions of the Vlasov equation.
- Subjects :
- General Mathematics
010102 general mathematics
Vlasov equation
Context (language use)
Function (mathematics)
Space (mathematics)
01 natural sciences
Mathematics - Analysis of PDEs
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Order (group theory)
Applied mathematics
Maximal function
Navier stokes
Uniqueness
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 02132230
- Volume :
- 36
- Database :
- OpenAIRE
- Journal :
- Revista Matemática Iberoamericana
- Accession number :
- edsair.doi.dedup.....568f15d9edeacefd5f247710802706c4
- Full Text :
- https://doi.org/10.4171/rmi/1120