Back to Search Start Over

Large time behavior of the Vlasov-Navier-Stokes system on the torus

Authors :
Iván Moyano
Ayman Moussa
Daniel Han-Kwan
Centre de Mathématiques Laurent Schwartz (CMLS)
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Statistical Laboratory [Cambridge]
Department of Pure Mathematics and Mathematical Statistics (DPMMS)
Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS)
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)-Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS)
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019)
Source :
Archive for Rational Mechanics and Analysis, Archive for Rational Mechanics and Analysis, Springer Verlag, 2020, ⟨10.1007/s00205-020-01491-w⟩
Publication Year :
2019

Abstract

International audience; We study the large time behavior of Fujita–Kato type solutions to the Vlasov–Navier–Stokes system set on $\T^3 \times \R^3$. Under the assumption that the initial so-called modulated energy is small enough, we prove that the distribution function converges to a Dirac mass in velocity, with exponential rate. The proof is based on the fine structure of the system and on a bootstrap analysis allowing us to get global bounds on moments.

Details

Language :
English
ISSN :
00039527 and 14320673
Database :
OpenAIRE
Journal :
Archive for Rational Mechanics and Analysis, Archive for Rational Mechanics and Analysis, Springer Verlag, 2020, ⟨10.1007/s00205-020-01491-w⟩
Accession number :
edsair.doi.dedup.....2a94621c3af145bdf2c60bfbd45aab6d
Full Text :
https://doi.org/10.1007/s00205-020-01491-w⟩