1. Entanglement Bounds in the XXZ Quantum Spin Chain
- Author
-
Christoph Fischbacher, Houssam Abdul-Rahman, and Günter Stolz
- Subjects
Physics ,Nuclear and High Energy Physics ,Random field ,82B44 ,010102 general mathematics ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,State (functional analysis) ,Quantum entanglement ,Breakup ,01 natural sciences ,Upper and lower bounds ,Mathematics - Spectral Theory ,0103 physical sciences ,FOS: Mathematics ,Bipartite graph ,Ising model ,010307 mathematical physics ,0101 mathematics ,Ground state ,Spectral Theory (math.SP) ,Mathematical Physics ,Mathematical physics - Abstract
We consider the XXZ spin chain, characterized by an anisotropy parameter $\Delta>1$, and normalized such that the ground state energy is $0$ and the ground state given by the all spins up state. The energies $E_K = K(1-1/\Delta)$, $K=1,2,\ldots$, can be interpreted as $K$-cluster break-up thresholds for down spin configurations. We show that, for every $K$, the bipartite entanglement of all states with energy below the $(K+1)$-cluster break-up satisfies a logarithmically corrected (or enhanced) area law. This generalizes a result by Beaud and Warzel, who considered energies in the droplet spectrum (i.e., below the 2-cluster break-up). For general $K$, we find an upper logarithmic bound with pre-factor $2K-1$. We show that this constant is optimal in the Ising limit $\Delta=\infty$. Beaud and Warzel also showed that after introducing a random field and disorder averaging the enhanced area law becomes a strict area law, again for states in the droplet regime. For the Ising limit with random field, we show that this result does not extend beyond the droplet regime. Instead, we find states with energies arbitrarily close to the $(K+1)$-cluster break-up whose entanglement satisfies a logarithmically growing lower bound with pre-factor $K-1$., Comment: 35 pages, v2: small errors and typos corrected
- Published
- 2020
- Full Text
- View/download PDF