Back to Search
Start Over
An uncertainty principle and lower bounds for the Dirichlet Laplacian on graphs
- Source :
- Journal of Spectral Theory. 10:115-145
- Publication Year :
- 2019
- Publisher :
- European Mathematical Society - EMS - Publishing House GmbH, 2019.
-
Abstract
- We prove a quantitative uncertainty principle at low energies for the Laplacian on fairly general weighted graphs with a uniform explicit control of the constants in terms of geometric quantities. A major step consists in establishing lower bounds for Dirichlet eigenvalues in terms of the geometry.<br />28 pages; minor revision, some (Counter)examples added, to appear in: Journal of Spectral Theory
- Subjects :
- Pure mathematics
Uncertainty principle
Statistical and Nonlinear Physics
Mathematics::Spectral Theory
Functional Analysis (math.FA)
Mathematics - Functional Analysis
47, 53
Dirichlet eigenvalue
Dirichlet laplacian
FOS: Mathematics
Geometry and Topology
Laplace operator
Mathematical Physics
Mathematics
Subjects
Details
- ISSN :
- 1664039X
- Volume :
- 10
- Database :
- OpenAIRE
- Journal :
- Journal of Spectral Theory
- Accession number :
- edsair.doi.dedup.....5dd194698f905603fbe1691ac2298cb7
- Full Text :
- https://doi.org/10.4171/jst/287