Back to Search Start Over

A continuum version of the Kunz–Souillard approach to localization in one dimension

Authors :
David Damanik
Günter Stolz
Source :
Journal für die reine und angewandte Mathematik (Crelles Journal). 2011
Publication Year :
2011
Publisher :
Walter de Gruyter GmbH, 2011.

Abstract

We consider continuum one-dimensional Schr\"odinger operators with potentials that are given by a sum of a suitable background potential and an Anderson-type potential whose single-site distribution has a continuous and compactly supported density. We prove exponential decay of the expectation of the finite volume correlators, uniform in any compact energy region, and deduce from this dynamical and spectral localization. The proofs implement a continuum analog of the method Kunz and Souillard developed in 1980 to study discrete one-dimensional Schr\"odinger operators with potentials of the form background plus random.

Details

ISSN :
14355345 and 00754102
Volume :
2011
Database :
OpenAIRE
Journal :
Journal für die reine und angewandte Mathematik (Crelles Journal)
Accession number :
edsair.doi...........247fac9afd0f3f5374397d4e23d52428
Full Text :
https://doi.org/10.1515/crelle.2011.070